[Top][All Lists]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

gcc errors

From: Constantine Kousoulos
Subject: gcc errors
Date: Sun, 01 Oct 2006 04:10:22 +0300
User-agent: Mozilla Thunderbird 1.5 (Windows/20051201)


As i have mentioned before, i'm trying to glue linux-2.6 device drivers
to Mach. While i was compiling a few *umodified* linux-2.6 files, i came
across some errors. I'm not sure if these errors are pure compilation
errors or there is something wrong with gcc on Mach. I'm inclined to
believe the second because the errors change when i compile with gcc-4
and gcc-4.1.

Here they are:

/* using gcc 4.1 */

a) expression 'extern void cpu_idle(void);' produces the following errors

error: expected expression before 'void'
error: expected ')' before '->' token
error: expected ')' before '==' token

1 static inline void task_lock(struct task_struct *p)
3    spin_lock(&p->alloc_lock);

5 static inline void task_unlock(struct task_struct *p)
7    spin_unlock(&p->alloc_lock);

the following error messages appear:
2: error: expected identifier or '(' before '{' token
6: error: expected identifier or '(' before '{' token

1 enum rpc_accept_stat {
2    RPC_SUCCESS = 0,

2: error: expected identifier before numeric constant

/* using gcc-4 */

a) expression 'extern void cpu_idle(void);' produces the following error

error: syntax error before 'void'

1 static inline void task_lock(struct task_struct *p)
3    spin_lock(&p->alloc_lock);

5 static inline void task_unlock(struct task_struct *p)
7    spin_unlock(&p->alloc_lock);

the following error messages appear:
2: error: syntax error before '{' token
6: error: syntax error before '{' token

1 enum rpc_accept_stat {
2    RPC_SUCCESS = 0,

2: error: syntax error before numeric constant

If you prefer to take a look at the code segments in the original files,
see smp.h line 11 for error (a), sched.h lines 1237 and 1242 for error
(b) and msg_prot.h line 48 for error (c).

Does anyone have insight on what might be going wrong or a way to
overcome such problems?


http://www.freemail.gr - δωρεάν υπηρεσία ηλεκτρονικού ταχυδρομείου.
http://www.freemail.gr - free email service for the Greek-speaking.
 * linux/include/net/sunrpc/msg_prot.h
 * Copyright (C) 1996, Olaf Kirch <okir@monad.swb.de>


#ifdef __KERNEL__ /* user programs should get these from the rpc header files */

#define RPC_VERSION 2

/* spec defines authentication flavor as an unsigned 32 bit integer */
typedef u32     rpc_authflavor_t;

enum rpc_auth_flavors {
        RPC_AUTH_NULL  = 0,
        RPC_AUTH_UNIX  = 1,
        RPC_AUTH_SHORT = 2,
        RPC_AUTH_DES   = 3,
        RPC_AUTH_KRB   = 4,
        RPC_AUTH_GSS   = 6,
        /* pseudoflavors: */
        RPC_AUTH_GSS_KRB5  = 390003,
        RPC_AUTH_GSS_KRB5I = 390004,
        RPC_AUTH_GSS_KRB5P = 390005,
        RPC_AUTH_GSS_LKEY  = 390006,
        RPC_AUTH_GSS_LKEYI = 390007,
        RPC_AUTH_GSS_LKEYP = 390008,
        RPC_AUTH_GSS_SPKM  = 390009,
        RPC_AUTH_GSS_SPKMI = 390010,
        RPC_AUTH_GSS_SPKMP = 390011,

enum rpc_msg_type {
        RPC_CALL = 0,
        RPC_REPLY = 1

enum rpc_reply_stat {
        RPC_MSG_ACCEPTED = 0,
        RPC_MSG_DENIED = 1

enum rpc_accept_stat {
        RPC_SUCCESS = 0,
        RPC_PROG_UNAVAIL = 1,
        RPC_PROG_MISMATCH = 2,
        RPC_PROC_UNAVAIL = 3,
        RPC_GARBAGE_ARGS = 4,
        RPC_SYSTEM_ERR = 5

enum rpc_reject_stat {
        RPC_MISMATCH = 0,
        RPC_AUTH_ERROR = 1

enum rpc_auth_stat {
        RPC_AUTH_OK = 0,
        RPC_AUTH_BADCRED = 1,
        RPC_AUTH_BADVERF = 3,
        RPC_AUTH_TOOWEAK = 5,
        /* RPCSEC_GSS errors */

#define RPC_PMAP_PROGRAM        100000
#define RPC_PMAP_VERSION        2
#define RPC_PMAP_PORT           111

#define RPC_MAXNETNAMELEN       256

 * From RFC 1831:
 * "A record is composed of one or more record fragments.  A record
 *  fragment is a four-byte header followed by 0 to (2**31) - 1 bytes of
 *  fragment data.  The bytes encode an unsigned binary number; as with
 *  XDR integers, the byte order is from highest to lowest.  The number
 *  encodes two values -- a boolean which indicates whether the fragment
 *  is the last fragment of the record (bit value 1 implies the fragment
 *  is the last fragment) and a 31-bit unsigned binary value which is the
 *  length in bytes of the fragment's data.  The boolean value is the
 *  highest-order bit of the header; the length is the 31 low-order bits.
 *  (Note that this record specification is NOT in XDR standard form!)"
 * The Linux RPC client always sends its requests in a single record
 * fragment, limiting the maximum payload size for stream transports to
 * 2GB.

typedef u32     rpc_fraghdr;

#define RPC_LAST_STREAM_FRAGMENT        (1U << 31)
#define RPC_MAX_FRAGMENT_SIZE           ((1U << 31) - 1)

#endif /* __KERNEL__ */

#ifndef _LINUX_SCHED_H
#define _LINUX_SCHED_H

#include <asm/param.h>  /* for HZ */

#include <linux/config.h>
#include <linux/capability.h>
#include <linux/threads.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/timex.h>
#include <linux/jiffies.h>
#include <linux/rbtree.h>
#include <linux/thread_info.h>
#include <linux/cpumask.h>
#include <linux/errno.h>
#include <linux/nodemask.h>

#include <asm/system.h>
#include <asm/semaphore.h>
#include <asm/page.h>
#include <asm/ptrace.h>
#include <asm/mmu.h>
#include <asm/cputime.h>

#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/signal.h>
#include <linux/securebits.h>
#include <linux/fs_struct.h>
#include <linux/compiler.h>
#include <linux/completion.h>
#include <linux/pid.h>
#include <linux/percpu.h>
#include <linux/topology.h>
#include <linux/seccomp.h>
#include <linux/rcupdate.h>
#include <linux/futex.h>

#include <linux/auxvec.h>       /* For AT_VECTOR_SIZE */

struct exec_domain;

 * cloning flags:
#define CSIGNAL         0x000000ff      /* signal mask to be sent at exit */
#define CLONE_VM        0x00000100      /* set if VM shared between processes */
#define CLONE_FS        0x00000200      /* set if fs info shared between 
processes */
#define CLONE_FILES     0x00000400      /* set if open files shared between 
processes */
#define CLONE_SIGHAND   0x00000800      /* set if signal handlers and blocked 
signals shared */
#define CLONE_PTRACE    0x00002000      /* set if we want to let tracing 
continue on the child too */
#define CLONE_VFORK     0x00004000      /* set if the parent wants the child to 
wake it up on mm_release */
#define CLONE_PARENT    0x00008000      /* set if we want to have the same 
parent as the cloner */
#define CLONE_THREAD    0x00010000      /* Same thread group? */
#define CLONE_NEWNS     0x00020000      /* New namespace group? */
#define CLONE_SYSVSEM   0x00040000      /* share system V SEM_UNDO semantics */
#define CLONE_SETTLS    0x00080000      /* create a new TLS for the child */
#define CLONE_PARENT_SETTID     0x00100000      /* set the TID in the parent */
#define CLONE_CHILD_CLEARTID    0x00200000      /* clear the TID in the child */
#define CLONE_DETACHED          0x00400000      /* Unused, ignored */
#define CLONE_UNTRACED          0x00800000      /* set if the tracing process 
can't force CLONE_PTRACE on this clone */
#define CLONE_CHILD_SETTID      0x01000000      /* set the TID in the child */
#define CLONE_STOPPED           0x02000000      /* Start in stopped state */

 * List of flags we want to share for kernel threads,
 * if only because they are not used by them anyway.

 * These are the constant used to fake the fixed-point load-average
 * counting. Some notes:
 *  - 11 bit fractions expand to 22 bits by the multiplies: this gives
 *    a load-average precision of 10 bits integer + 11 bits fractional
 *  - if you want to count load-averages more often, you need more
 *    precision, or rounding will get you. With 2-second counting freq,
 *    the EXP_n values would be 1981, 2034 and 2043 if still using only
 *    11 bit fractions.
extern unsigned long avenrun[];         /* Load averages */

#define FSHIFT          11              /* nr of bits of precision */
#define FIXED_1         (1<<FSHIFT)     /* 1.0 as fixed-point */
#define LOAD_FREQ       (5*HZ)          /* 5 sec intervals */
#define EXP_1           1884            /* 1/exp(5sec/1min) as fixed-point */
#define EXP_5           2014            /* 1/exp(5sec/5min) */
#define EXP_15          2037            /* 1/exp(5sec/15min) */

#define CALC_LOAD(load,exp,n) \
        load *= exp; \
        load += n*(FIXED_1-exp); \
        load >>= FSHIFT;

extern unsigned long total_forks;
extern int nr_threads;
extern int last_pid;
DECLARE_PER_CPU(unsigned long, process_counts);
extern int nr_processes(void);
extern unsigned long nr_running(void);
extern unsigned long nr_uninterruptible(void);
extern unsigned long nr_active(void);
extern unsigned long nr_iowait(void);

#include <linux/time.h>
#include <linux/param.h>
#include <linux/resource.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>

#include <asm/processor.h>

 * Task state bitmask. NOTE! These bits are also
 * encoded in fs/proc/array.c: get_task_state().
 * We have two separate sets of flags: task->state
 * is about runnability, while task->exit_state are
 * about the task exiting. Confusing, but this way
 * modifying one set can't modify the other one by
 * mistake.
#define TASK_RUNNING            0
#define TASK_STOPPED            4
#define TASK_TRACED             8
/* in tsk->exit_state */
#define EXIT_ZOMBIE             16
#define EXIT_DEAD               32
/* in tsk->state again */

#define __set_task_state(tsk, state_value)              \
        do { (tsk)->state = (state_value); } while (0)
#define set_task_state(tsk, state_value)                \
        set_mb((tsk)->state, (state_value))

 * set_current_state() includes a barrier so that the write of current->state
 * is correctly serialised wrt the caller's subsequent test of whether to
 * actually sleep:
 *      set_current_state(TASK_UNINTERRUPTIBLE);
 *      if (do_i_need_to_sleep())
 *              schedule();
 * If the caller does not need such serialisation then use __set_current_state()
#define __set_current_state(state_value)                        \
        do { current->state = (state_value); } while (0)
#define set_current_state(state_value)          \
        set_mb(current->state, (state_value))

/* Task command name length */
#define TASK_COMM_LEN 16

 * Scheduling policies
#define SCHED_NORMAL            0
#define SCHED_FIFO              1
#define SCHED_RR                2
#define SCHED_BATCH             3

struct sched_param {
        int sched_priority;

#ifdef __KERNEL__

#include <linux/spinlock.h>

 * This serializes "schedule()" and also protects
 * the run-queue from deletions/modifications (but
 * _adding_ to the beginning of the run-queue has
 * a separate lock).
extern rwlock_t tasklist_lock;
extern spinlock_t mmlist_lock;

typedef struct task_struct linux26_task_t;

extern void sched_init(void);
extern void sched_init_smp(void);
extern void init_idle(linux26_task_t *idle, int cpu);

extern cpumask_t nohz_cpu_mask;

extern void show_state(void);
extern void show_regs(struct pt_regs *);

 * TASK is a pointer to the task whose backtrace we want to see (or NULL for 
 * task), SP is the stack pointer of the first frame that should be shown in 
the back
 * trace (or NULL if the entire call-chain of the task should be shown).
extern void show_stack(struct task_struct *task, unsigned long *sp);

void io_schedule(void);
long io_schedule_timeout(long timeout);

extern void cpu_init (void);
extern void trap_init(void);
extern void update_process_times(int user);
extern void scheduler_tick(void);

extern void softlockup_tick(void);
extern void spawn_softlockup_task(void);
extern void touch_softlockup_watchdog(void);
static inline void softlockup_tick(void)
static inline void spawn_softlockup_task(void)
static inline void touch_softlockup_watchdog(void)

/* Attach to any functions which should be ignored in wchan output. */
#define __sched         __attribute__((__section__(".sched.text")))
/* Is this address in the __sched functions? */
extern int in_sched_functions(unsigned long addr);

extern signed long FASTCALL(schedule_timeout(signed long timeout));
extern signed long schedule_timeout_interruptible(signed long timeout);
extern signed long schedule_timeout_uninterruptible(signed long timeout);
asmlinkage void schedule(void);

struct namespace;

/* Maximum number of active map areas.. This is a random (large) number */
#define DEFAULT_MAX_MAP_COUNT   65536

extern int sysctl_max_map_count;

#include <linux/aio.h>

extern unsigned long
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
                       unsigned long, unsigned long);
extern unsigned long
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
                          unsigned long len, unsigned long pgoff,
                          unsigned long flags);
extern void arch_unmap_area(struct mm_struct *, unsigned long);
extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);

 * The mm counters are not protected by its page_table_lock,
 * so must be incremented atomically.
#define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, 
#define get_mm_counter(mm, member) ((unsigned 
#define add_mm_counter(mm, member, value) atomic_long_add(value, 
#define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
#define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
typedef atomic_long_t mm_counter_t;

 * The mm counters are protected by its page_table_lock,
 * so can be incremented directly.
#define set_mm_counter(mm, member, value) (mm)->_##member = (value)
#define get_mm_counter(mm, member) ((mm)->_##member)
#define add_mm_counter(mm, member, value) (mm)->_##member += (value)
#define inc_mm_counter(mm, member) (mm)->_##member++
#define dec_mm_counter(mm, member) (mm)->_##member--
typedef unsigned long mm_counter_t;


#define get_mm_rss(mm)                                  \
        (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
#define update_hiwater_rss(mm)  do {                    \
        unsigned long _rss = get_mm_rss(mm);            \
        if ((mm)->hiwater_rss < _rss)                   \
                (mm)->hiwater_rss = _rss;               \
} while (0)
#define update_hiwater_vm(mm)   do {                    \
        if ((mm)->hiwater_vm < (mm)->total_vm)          \
                (mm)->hiwater_vm = (mm)->total_vm;      \
} while (0)

struct mm_struct {
        struct vm_area_struct * mmap;           /* list of VMAs */
        struct rb_root mm_rb;
        struct vm_area_struct * mmap_cache;     /* last find_vma result */
        unsigned long (*get_unmapped_area) (struct file *filp,
                                unsigned long addr, unsigned long len,
                                unsigned long pgoff, unsigned long flags);
        void (*unmap_area) (struct mm_struct *mm, unsigned long addr);
        unsigned long mmap_base;                /* base of mmap area */
        unsigned long task_size;                /* size of task vm space */
        unsigned long cached_hole_size;         /* if non-zero, the largest 
hole below free_area_cache */
        unsigned long free_area_cache;          /* first hole of size 
cached_hole_size or larger */
        pgd_t * pgd;
        atomic_t mm_users;                      /* How many users with user 
space? */
        atomic_t mm_count;                      /* How many references to 
"struct mm_struct" (users count as 1) */
        int map_count;                          /* number of VMAs */
        struct rw_semaphore mmap_sem;
        spinlock_t page_table_lock;             /* Protects page tables and 
some counters */

        struct list_head mmlist;                /* List of maybe swapped mm's.  
These are globally strung
                                                 * together off init_mm.mmlist, 
and are protected
                                                 * by mmlist_lock

        /* Special counters, in some configurations protected by the
         * page_table_lock, in other configurations by being atomic.
        mm_counter_t _file_rss;
        mm_counter_t _anon_rss;

        unsigned long hiwater_rss;      /* High-watermark of RSS usage */
        unsigned long hiwater_vm;       /* High-water virtual memory usage */

        unsigned long total_vm, locked_vm, shared_vm, exec_vm;
        unsigned long stack_vm, reserved_vm, def_flags, nr_ptes;
        unsigned long start_code, end_code, start_data, end_data;
        unsigned long start_brk, brk, start_stack;
        unsigned long arg_start, arg_end, env_start, env_end;

        unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */

        unsigned dumpable:2;
        cpumask_t cpu_vm_mask;

        /* Architecture-specific MM context */
        mm_context_t context;

        /* Token based thrashing protection. */
        unsigned long swap_token_time;
        char recent_pagein;

        /* coredumping support */
        int core_waiters;
        struct completion *core_startup_done, core_done;

        /* aio bits */
        rwlock_t                ioctx_list_lock;
        struct kioctx           *ioctx_list;

struct sighand_struct {
        atomic_t                count;
        struct k_sigaction      action[_NSIG];
        spinlock_t              siglock;

 * NOTE! "signal_struct" does not have it's own
 * locking, because a shared signal_struct always
 * implies a shared sighand_struct, so locking
 * sighand_struct is always a proper superset of
 * the locking of signal_struct.
struct signal_struct {
        atomic_t                count;
        atomic_t                live;

        wait_queue_head_t       wait_chldexit;  /* for wait4() */

        /* current thread group signal load-balancing target: */
        linux26_task_t                  *curr_target;

        /* shared signal handling: */
        struct sigpending       shared_pending;

        /* thread group exit support */
        int                     group_exit_code;
        /* overloaded:
         * - notify group_exit_task when ->count is equal to notify_count
         * - everyone except group_exit_task is stopped during signal delivery
         *   of fatal signals, group_exit_task processes the signal.
        struct task_struct      *group_exit_task;
        int                     notify_count;

        /* thread group stop support, overloads group_exit_code too */
        int                     group_stop_count;
        unsigned int            flags; /* see SIGNAL_* flags below */

        /* POSIX.1b Interval Timers */
        struct list_head posix_timers;

        /* ITIMER_REAL timer for the process */
        struct hrtimer real_timer;
        struct task_struct *tsk;
        ktime_t it_real_incr;

        /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
        cputime_t it_prof_expires, it_virt_expires;
        cputime_t it_prof_incr, it_virt_incr;

        /* job control IDs */
        pid_t pgrp;
        pid_t tty_old_pgrp;
        pid_t session;
        /* boolean value for session group leader */
        int leader;

        struct tty_struct *tty; /* NULL if no tty */

         * Cumulative resource counters for dead threads in the group,
         * and for reaped dead child processes forked by this group.
         * Live threads maintain their own counters and add to these
         * in __exit_signal, except for the group leader.
        cputime_t utime, stime, cutime, cstime;
        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;

         * Cumulative ns of scheduled CPU time for dead threads in the
         * group, not including a zombie group leader.  (This only differs
         * from jiffies_to_ns(utime + stime) if sched_clock uses something
         * other than jiffies.)
        unsigned long long sched_time;

         * We don't bother to synchronize most readers of this at all,
         * because there is no reader checking a limit that actually needs
         * to get both rlim_cur and rlim_max atomically, and either one
         * alone is a single word that can safely be read normally.
         * getrlimit/setrlimit use task_lock(current->group_leader) to
         * protect this instead of the siglock, because they really
         * have no need to disable irqs.
        struct rlimit rlim[RLIM_NLIMITS];

        struct list_head cpu_timers[3];

        /* keep the process-shared keyrings here so that they do the right
         * thing in threads created with CLONE_THREAD */
        struct key *session_keyring;    /* keyring inherited over fork */
        struct key *process_keyring;    /* keyring private to this process */

/* Context switch must be unlocked if interrupts are to be enabled */

 * Bits in flags field of signal_struct.
#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
#define SIGNAL_STOP_DEQUEUED    0x00000002 /* stop signal dequeued */
#define SIGNAL_STOP_CONTINUED   0x00000004 /* SIGCONT since WCONTINUED reap */
#define SIGNAL_GROUP_EXIT       0x00000008 /* group exit in progress */

 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
 * values are inverted: lower p->prio value means higher priority.
 * The MAX_USER_RT_PRIO value allows the actual maximum
 * RT priority to be separate from the value exported to
 * user-space.  This allows kernel threads to set their
 * priority to a value higher than any user task. Note:
 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.

#define MAX_USER_RT_PRIO        100
#define MAX_RT_PRIO             MAX_USER_RT_PRIO

#define MAX_PRIO                (MAX_RT_PRIO + 40)

#define rt_task(p)              (unlikely((p)->prio < MAX_RT_PRIO))
#define batch_task(p)           (unlikely((p)->policy == SCHED_BATCH))

 * Some day this will be a full-fledged user tracking system..
struct user_struct {
        atomic_t __count;       /* reference count */
        atomic_t processes;     /* How many processes does this user have? */
        atomic_t files;         /* How many open files does this user have? */
        atomic_t sigpending;    /* How many pending signals does this user 
have? */
        atomic_t inotify_watches; /* How many inotify watches does this user 
have? */
        atomic_t inotify_devs;  /* How many inotify devs does this user have 
opened? */
        /* protected by mq_lock */
        unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
        unsigned long locked_shm; /* How many pages of mlocked shm ? */

        struct key *uid_keyring;        /* UID specific keyring */
        struct key *session_keyring;    /* UID's default session keyring */

        /* Hash table maintenance information */
        struct list_head uidhash_list;
        uid_t uid;

extern struct user_struct *find_user(uid_t);

extern struct user_struct root_user;
#define INIT_USER (&root_user)

typedef struct prio_array prio_array_t;
struct backing_dev_info;
struct reclaim_state;

struct sched_info {
        /* cumulative counters */
        unsigned long   cpu_time,       /* time spent on the cpu */
                        run_delay,      /* time spent waiting on a runqueue */
                        pcnt;           /* # of timeslices run on this cpu */

        /* timestamps */
        unsigned long   last_arrival,   /* when we last ran on a cpu */
                        last_queued;    /* when we were last queued to run */

extern struct file_operations proc_schedstat_operations;

enum idle_type

 * sched-domains (multiprocessor balancing) declarations:
#define SCHED_LOAD_SCALE        128UL   /* increase resolution of load */

#define SD_LOAD_BALANCE         1       /* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE      2       /* Balance when about to become idle */
#define SD_BALANCE_EXEC         4       /* Balance on exec */
#define SD_BALANCE_FORK         8       /* Balance on fork, clone */
#define SD_WAKE_IDLE            16      /* Wake to idle CPU on task wakeup */
#define SD_WAKE_AFFINE          32      /* Wake task to waking CPU */
#define SD_WAKE_BALANCE         64      /* Perform balancing at task wakeup */
#define SD_SHARE_CPUPOWER       128     /* Domain members share cpu power */

struct sched_group {
        struct sched_group *next;       /* Must be a circular list */
        cpumask_t cpumask;

         * CPU power of this group, SCHED_LOAD_SCALE being max power for a
         * single CPU. This is read only (except for setup, hotplug CPU).
        unsigned long cpu_power;

struct sched_domain {
        /* These fields must be setup */
        struct sched_domain *parent;    /* top domain must be null terminated */
        struct sched_group *groups;     /* the balancing groups of the domain */
        cpumask_t span;                 /* span of all CPUs in this domain */
        unsigned long min_interval;     /* Minimum balance interval ms */
        unsigned long max_interval;     /* Maximum balance interval ms */
        unsigned int busy_factor;       /* less balancing by factor if busy */
        unsigned int imbalance_pct;     /* No balance until over watermark */
        unsigned long long cache_hot_time; /* Task considered cache hot (ns) */
        unsigned int cache_nice_tries;  /* Leave cache hot tasks for # tries */
        unsigned int per_cpu_gain;      /* CPU % gained by adding domain cpus */
        unsigned int busy_idx;
        unsigned int idle_idx;
        unsigned int newidle_idx;
        unsigned int wake_idx;
        unsigned int forkexec_idx;
        int flags;                      /* See SD_* */

        /* Runtime fields. */
        unsigned long last_balance;     /* init to jiffies. units in jiffies */
        unsigned int balance_interval;  /* initialise to 1. units in ms. */
        unsigned int nr_balance_failed; /* initialise to 0 */

        /* load_balance() stats */
        unsigned long lb_cnt[MAX_IDLE_TYPES];
        unsigned long lb_failed[MAX_IDLE_TYPES];
        unsigned long lb_balanced[MAX_IDLE_TYPES];
        unsigned long lb_imbalance[MAX_IDLE_TYPES];
        unsigned long lb_gained[MAX_IDLE_TYPES];
        unsigned long lb_hot_gained[MAX_IDLE_TYPES];
        unsigned long lb_nobusyg[MAX_IDLE_TYPES];
        unsigned long lb_nobusyq[MAX_IDLE_TYPES];

        /* Active load balancing */
        unsigned long alb_cnt;
        unsigned long alb_failed;
        unsigned long alb_pushed;

        /* SD_BALANCE_EXEC stats */
        unsigned long sbe_cnt;
        unsigned long sbe_balanced;
        unsigned long sbe_pushed;

        /* SD_BALANCE_FORK stats */
        unsigned long sbf_cnt;
        unsigned long sbf_balanced;
        unsigned long sbf_pushed;

        /* try_to_wake_up() stats */
        unsigned long ttwu_wake_remote;
        unsigned long ttwu_move_affine;
        unsigned long ttwu_move_balance;

extern void partition_sched_domains(cpumask_t *partition1,
                                    cpumask_t *partition2);

 * Maximum cache size the migration-costs auto-tuning code will
 * search from:
extern unsigned int max_cache_size;

#endif  /* CONFIG_SMP */

struct io_context;                      /* See blkdev.h */
void exit_io_context(void);
struct cpuset;

#define NGROUPS_SMALL           32
#define NGROUPS_PER_BLOCK       ((int)(PAGE_SIZE / sizeof(gid_t)))
struct group_info {
        int ngroups;
        atomic_t usage;
        gid_t small_block[NGROUPS_SMALL];
        int nblocks;
        gid_t *blocks[0];

 * get_group_info() must be called with the owning task locked (via task_lock())
 * when task != current.  The reason being that the vast majority of callers are
 * looking at current->group_info, which can not be changed except by the
 * current task.  Changing current->group_info requires the task lock, too.
#define get_group_info(group_info) do { \
        atomic_inc(&(group_info)->usage); \
} while (0)

#define put_group_info(group_info) do { \
        if (atomic_dec_and_test(&(group_info)->usage)) \
                groups_free(group_info); \
} while (0)

extern struct group_info *groups_alloc(int gidsetsize);
extern void groups_free(struct group_info *group_info);
extern int set_current_groups(struct group_info *group_info);
extern int groups_search(struct group_info *group_info, gid_t grp);
/* access the groups "array" with this macro */
#define GROUP_AT(gi, i) \

extern void prefetch_stack(struct task_struct*);
static inline void prefetch_stack(struct task_struct *t) { }

struct audit_context;           /* See audit.c */
struct mempolicy;
struct pipe_inode_info;

enum sleep_type {

struct task_struct {
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        struct thread_info *thread_info;
        atomic_t usage;
        unsigned long flags;    /* per process flags, defined below */
        unsigned long ptrace;

        int lock_depth;         /* BKL lock depth */

#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
        int oncpu;
        int prio, static_prio;
        struct list_head run_list;
        prio_array_t *array;

        unsigned short ioprio;
        unsigned int btrace_seq;

        unsigned long sleep_avg;
        unsigned long long timestamp, last_ran;
        unsigned long long sched_time; /* sched_clock time spent running */
        enum sleep_type sleep_type;

        unsigned long policy;
        cpumask_t cpus_allowed;
        unsigned int time_slice, first_time_slice;

        struct sched_info sched_info;

        struct list_head tasks;
         * ptrace_list/ptrace_children forms the list of my children
         * that were stolen by a ptracer.
        struct list_head ptrace_children;
        struct list_head ptrace_list;

        struct mm_struct *mm, *active_mm;

/* task state */
        struct linux_binfmt *binfmt;
        long exit_state;
        int exit_code, exit_signal;
        int pdeath_signal;  /*  The signal sent when the parent dies  */
        /* ??? */
        unsigned long personality;
        unsigned did_exec:1;
        pid_t pid;
        pid_t tgid;
         * pointers to (original) parent process, youngest child, younger 
         * older sibling, respectively.  (p->father can be replaced with 
         * p->parent->pid)
        struct task_struct *real_parent; /* real parent process (when being 
debugged) */
        struct task_struct *parent;     /* parent process */
         * children/sibling forms the list of my children plus the
         * tasks I'm ptracing.
        struct list_head children;      /* list of my children */
        struct list_head sibling;       /* linkage in my parent's children list 
        struct task_struct *group_leader;       /* threadgroup leader */

        /* PID/PID hash table linkage. */
        struct pid_link pids[PIDTYPE_MAX];
        struct list_head thread_group;

        struct completion *vfork_done;          /* for vfork() */
        int __user *set_child_tid;              /* CLONE_CHILD_SETTID */
        int __user *clear_child_tid;            /* CLONE_CHILD_CLEARTID */

        unsigned long rt_priority;
        cputime_t utime, stime;
        unsigned long nvcsw, nivcsw; /* context switch counts */
        struct timespec start_time;
/* mm fault and swap info: this can arguably be seen as either mm-specific or 
thread-specific */
        unsigned long min_flt, maj_flt;

        cputime_t it_prof_expires, it_virt_expires;
        unsigned long long it_sched_expires;
        struct list_head cpu_timers[3];

/* process credentials */
        uid_t uid,euid,suid,fsuid;
        gid_t gid,egid,sgid,fsgid;
        struct group_info *group_info;
        kernel_cap_t   cap_effective, cap_inheritable, cap_permitted;
        unsigned keep_capabilities:1;
        struct user_struct *user;
        struct key *request_key_auth;   /* assumed request_key authority */
        struct key *thread_keyring;     /* keyring private to this thread */
        unsigned char jit_keyring;      /* default keyring to attach requested 
keys to */
        int oomkilladj; /* OOM kill score adjustment (bit shift). */
        char comm[TASK_COMM_LEN]; /* executable name excluding path
                                     - access with [gs]et_task_comm (which lock
                                       it with task_lock())
                                     - initialized normally by flush_old_exec */
/* file system info */
        int link_count, total_link_count;
/* ipc stuff */
        struct sysv_sem sysvsem;
/* CPU-specific state of this task */
        struct thread_struct thread;
/* filesystem information */
        struct fs_struct *fs;
/* open file information */
        struct files_struct *files;
/* namespace */
        struct namespace *namespace;
/* signal handlers */
        struct signal_struct *signal;
        struct sighand_struct *sighand;

        sigset_t blocked, real_blocked;
        sigset_t saved_sigmask;         /* To be restored with 
        struct sigpending pending;

        unsigned long sas_ss_sp;
        size_t sas_ss_size;
        int (*notifier)(void *priv);
        void *notifier_data;
        sigset_t *notifier_mask;
        void *security;
        struct audit_context *audit_context;
        seccomp_t seccomp;

/* Thread group tracking */
        u32 parent_exec_id;
        u32 self_exec_id;
/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
        spinlock_t alloc_lock;
/* Protection of proc_dentry: nesting proc_lock, dcache_lock, 
write_lock_irq(&tasklist_lock); */
        spinlock_t proc_lock;

        /* mutex deadlock detection */
        struct mutex_waiter *blocked_on;

/* journalling filesystem info */
        void *journal_info;

/* VM state */
        struct reclaim_state *reclaim_state;

        struct dentry *proc_dentry;
        struct backing_dev_info *backing_dev_info;

        struct io_context *io_context;

        unsigned long ptrace_message;
        siginfo_t *last_siginfo; /* For ptrace use.  */
 * current io wait handle: wait queue entry to use for io waits
 * If this thread is processing aio, this points at the waitqueue
 * inside the currently handled kiocb. It may be NULL (i.e. default
 * to a stack based synchronous wait) if its doing sync IO.
        wait_queue_t *io_wait;
/* i/o counters(bytes read/written, #syscalls */
        u64 rchar, wchar, syscr, syscw;
        u64 acct_rss_mem1;      /* accumulated rss usage */
        u64 acct_vm_mem1;       /* accumulated virtual memory usage */
        clock_t acct_stimexpd;  /* clock_t-converted stime since last update */
        struct mempolicy *mempolicy;
        short il_next;
        struct cpuset *cpuset;
        nodemask_t mems_allowed;
        int cpuset_mems_generation;
        int cpuset_mem_spread_rotor;
        struct robust_list_head __user *robust_list;
        struct compat_robust_list_head __user *compat_robust_list;

        atomic_t fs_excl;       /* holding fs exclusive resources */
        struct rcu_head rcu;

         * cache last used pipe for splice
        struct pipe_inode_info *splice_pipe;

static inline pid_t process_group(struct task_struct *tsk)
        return tsk->signal->pgrp;

 * pid_alive - check that a task structure is not stale
 * @p: Task structure to be checked.
 * Test if a process is not yet dead (at most zombie state)
 * If pid_alive fails, then pointers within the task structure
 * can be stale and must not be dereferenced.
static inline int pid_alive(struct task_struct *p)
        return p->pids[PIDTYPE_PID].pid != NULL;

extern void free_task(struct task_struct *tsk);
#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)

extern void __put_task_struct(struct task_struct *t);

static inline void put_task_struct(struct task_struct *t)
        if (atomic_dec_and_test(&t->usage))

 * Per process flags
#define PF_ALIGNWARN    0x00000001      /* Print alignment warning msgs */
                                        /* Not implemented yet, only for 486*/
#define PF_STARTING     0x00000002      /* being created */
#define PF_EXITING      0x00000004      /* getting shut down */
#define PF_DEAD         0x00000008      /* Dead */
#define PF_FORKNOEXEC   0x00000040      /* forked but didn't exec */
#define PF_SUPERPRIV    0x00000100      /* used super-user privileges */
#define PF_DUMPCORE     0x00000200      /* dumped core */
#define PF_SIGNALED     0x00000400      /* killed by a signal */
#define PF_MEMALLOC     0x00000800      /* Allocating memory */
#define PF_FLUSHER      0x00001000      /* responsible for disk writeback */
#define PF_USED_MATH    0x00002000      /* if unset the fpu must be initialized 
before use */
#define PF_FREEZE       0x00004000      /* this task is being frozen for 
suspend now */
#define PF_NOFREEZE     0x00008000      /* this thread should not be frozen */
#define PF_FROZEN       0x00010000      /* frozen for system suspend */
#define PF_FSTRANS      0x00020000      /* inside a filesystem transaction */
#define PF_KSWAPD       0x00040000      /* I am kswapd */
#define PF_SWAPOFF      0x00080000      /* I am in swapoff */
#define PF_LESS_THROTTLE 0x00100000     /* Throttle me less: I clean memory */
#define PF_SYNCWRITE    0x00200000      /* I am doing a sync write */
#define PF_BORROWED_MM  0x00400000      /* I am a kthread doing use_mm */
#define PF_RANDOMIZE    0x00800000      /* randomize virtual address space */
#define PF_SWAPWRITE    0x01000000      /* Allowed to write to swap */
#define PF_SPREAD_PAGE  0x04000000      /* Spread page cache over cpuset */
#define PF_SPREAD_SLAB  0x08000000      /* Spread some slab caches over cpuset 
#define PF_MEMPOLICY    0x10000000      /* Non-default NUMA mempolicy */

 * Only the _current_ task can read/write to tsk->flags, but other
 * tasks can access tsk->flags in readonly mode for example
 * with tsk_used_math (like during threaded core dumping).
 * There is however an exception to this rule during ptrace
 * or during fork: the ptracer task is allowed to write to the
 * child->flags of its traced child (same goes for fork, the parent
 * can write to the child->flags), because we're guaranteed the
 * child is not running and in turn not changing child->flags
 * at the same time the parent does it.
#define clear_stopped_child_used_math(child) do { (child)->flags &= 
~PF_USED_MATH; } while (0)
#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; 
} while (0)
#define clear_used_math() clear_stopped_child_used_math(current)
#define set_used_math() set_stopped_child_used_math(current)
#define conditional_stopped_child_used_math(condition, child) \
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? 
PF_USED_MATH : 0; } while (0)
#define conditional_used_math(condition) \
        conditional_stopped_child_used_math(condition, current)
#define copy_to_stopped_child_used_math(child) \
        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags 
& PF_USED_MATH; } while (0)
/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
#define used_math() tsk_used_math(current)

extern int set_cpus_allowed(linux26_task_t *p, cpumask_t new_mask);
static inline int set_cpus_allowed(linux26_task_t *p, cpumask_t new_mask)
        if (!cpu_isset(0, new_mask))
                return -LINUX26_EINVAL;
        return 0;

extern unsigned long long sched_clock(void);
extern unsigned long long current_sched_time(const linux26_task_t 

/* sched_exec is called by processes performing an exec */
extern void sched_exec(void);
#define sched_exec()   {}

extern void idle_task_exit(void);
static inline void idle_task_exit(void) {}

extern void sched_idle_next(void);
extern void set_user_nice(linux26_task_t *p, long nice);
extern int task_prio(const linux26_task_t *p);
extern int task_nice(const linux26_task_t *p);
extern int can_nice(const linux26_task_t *p, const int nice);
extern int task_curr(const linux26_task_t *p);
extern int idle_cpu(int cpu);
extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
extern linux26_task_t *idle_task(int cpu);
extern linux26_task_t *curr_task(int cpu);
extern void set_curr_task(int cpu, linux26_task_t *p);

void yield(void);

 * The default (Linux) execution domain.
extern struct exec_domain       default_exec_domain;

union thread_union {
        struct thread_info thread_info;
        unsigned long stack[THREAD_SIZE/sizeof(long)];

static inline int kstack_end(void *addr)
        /* Reliable end of stack detection:
         * Some APM bios versions misalign the stack
        return !(((unsigned long)addr+sizeof(void*)-1) & 

extern union thread_union init_thread_union;
extern struct task_struct init_task;

extern struct   mm_struct init_mm;

#define find_task_by_pid(nr)    find_task_by_pid_type(PIDTYPE_PID, nr)
extern struct task_struct *find_task_by_pid_type(int type, int pid);
extern void set_special_pids(pid_t session, pid_t pgrp);
extern void __set_special_pids(pid_t session, pid_t pgrp);

/* per-UID process charging. */
extern struct user_struct * alloc_uid(uid_t);
static inline struct user_struct *get_uid(struct user_struct *u)
        return u;
extern void free_uid(struct user_struct *);
extern void switch_uid(struct user_struct *);

#include <asm/current.h>

extern void do_timer(struct pt_regs *);

extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int 
extern int FASTCALL(wake_up_process(struct task_struct * tsk));
extern void FASTCALL(wake_up_new_task(struct task_struct * tsk,
                                                unsigned long clone_flags));
 extern void kick_process(struct task_struct *tsk);
 static inline void kick_process(struct task_struct *tsk) { }
extern void FASTCALL(sched_fork(linux26_task_t * p, int clone_flags));
extern void FASTCALL(sched_exit(linux26_task_t * p));

extern int in_group_p(gid_t);
extern int in_egroup_p(gid_t);

extern void proc_caches_init(void);
extern void flush_signals(struct task_struct *);
extern void flush_signal_handlers(struct task_struct *, int force_default);
extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t 

static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, 
siginfo_t *info)
        unsigned long flags;
        int ret;

        spin_lock_irqsave(&tsk->sighand->siglock, flags);
        ret = dequeue_signal(tsk, mask, info);
        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);

        return ret;

extern void block_all_signals(int (*notifier)(void *priv), void *priv,
                              sigset_t *mask);
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sigsegv(int, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
extern int kill_pg_info(int, struct siginfo *, pid_t);
extern int kill_proc_info(int, struct siginfo *, pid_t);
extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t);
extern void do_notify_parent(struct task_struct *, int);
extern void force_sig(int, struct task_struct *);
extern void force_sig_specific(int, struct task_struct *);
extern int send_sig(int, struct task_struct *, int);
extern void zap_other_threads(struct task_struct *p);
extern int kill_pg(pid_t, int, int);
extern int kill_proc(pid_t, int, int);
extern struct sigqueue *sigqueue_alloc(void);
extern void sigqueue_free(struct sigqueue *);
extern int send_sigqueue(int, struct sigqueue *,  struct task_struct *);
extern int send_group_sigqueue(int, struct sigqueue *,  struct task_struct *);
extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned 

/* These can be the second arg to send_sig_info/send_group_sig_info.  */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV   ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)

static inline int is_si_special(const struct siginfo *info)
        return info <= SEND_SIG_FORCED;

/* True if we are on the alternate signal stack.  */

static inline int on_sig_stack(unsigned long sp)
        return (sp - current->sas_ss_sp < current->sas_ss_size);

static inline int sas_ss_flags(unsigned long sp)
        return (current->sas_ss_size == 0 ? SS_DISABLE
                : on_sig_stack(sp) ? SS_ONSTACK : 0);

 * Routines for handling mm_structs
extern struct mm_struct * mm_alloc(void);

/* mmdrop drops the mm and the page tables */
extern void FASTCALL(__mmdrop(struct mm_struct *));
static inline void mmdrop(struct mm_struct * mm)
        if (atomic_dec_and_test(&mm->mm_count))

/* mmput gets rid of the mappings and all user-space */
extern void mmput(struct mm_struct *);
/* Grab a reference to a task's mm, if it is not already going away */
extern struct mm_struct *get_task_mm(struct task_struct *task);
/* Remove the current tasks stale references to the old mm_struct */
extern void mm_release(struct task_struct *, struct mm_struct *);

extern int  copy_thread(int, unsigned long, unsigned long, unsigned long, 
struct task_struct *, struct pt_regs *);
extern void flush_thread(void);
extern void exit_thread(void);

extern void exit_files(struct task_struct *);
extern void __cleanup_signal(struct signal_struct *);
extern void __cleanup_sighand(struct sighand_struct *);
extern void exit_itimers(struct signal_struct *);

extern NORET_TYPE void do_group_exit(int);

extern void daemonize(const char *, ...);
extern int allow_signal(int);
extern int disallow_signal(int);
extern linux26_task_t *child_reaper;

extern int do_execve(char *, char __user * __user *, char __user * __user *, 
struct pt_regs *);
extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned 
long, int __user *, int __user *);
linux26_task_t *fork_idle(int);

extern void set_task_comm(struct task_struct *tsk, char *from);
extern void get_task_comm(char *to, struct task_struct *tsk);

extern void wait_task_inactive(linux26_task_t * p);
#define wait_task_inactive(p)   do { } while (0)

#define remove_parent(p)        list_del_init(&(p)->sibling)
#define add_parent(p)           

#define next_task(p)    list_entry(rcu_dereference((p)->tasks.next), struct 
task_struct, tasks)

#define for_each_process(p) \
        for (p = &init_task ; (p = next_task(p)) != &init_task ; )

 * Careful: do_each_thread/while_each_thread is a double loop so
 *          'break' will not work as expected - use goto instead.
#define do_each_thread(g, t) \
        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do

#define while_each_thread(g, t) \
        while ((t = next_thread(t)) != g)

/* de_thread depends on thread_group_leader not being a pid based check */
#define thread_group_leader(p)  (p == p->group_leader)

static inline linux26_task_t *next_thread(const linux26_task_t *p)
        return list_entry(rcu_dereference(p->thread_group.next),
                                linux26_task_t, thread_group);

static inline int thread_group_empty(linux26_task_t *p)
        return list_empty(&p->thread_group);

#define delay_group_leader(p) \
                (thread_group_leader(p) && !thread_group_empty(p))

 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring
 * subscriptions and synchronises with wait4().  Also used in procfs.  Also
 * pins the final release of task.io_context.  Also protects ->cpuset.
 * Nests both inside and outside of read_lock(&tasklist_lock).
 * It must not be nested with write_lock_irq(&tasklist_lock),
 * neither inside nor outside.
static inline void task_lock(struct task_struct *p)

static inline void task_unlock(struct task_struct *p)

extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
                                                        unsigned long *flags);

static inline void unlock_task_sighand(struct task_struct *tsk,
                                                unsigned long *flags)
        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);


#define task_thread_info(task) (task)->thread_info
#define task_stack_page(task) ((void*)((task)->thread_info))

static inline void setup_thread_stack(struct task_struct *p, struct task_struct 
        *task_thread_info(p) = *task_thread_info(org);
        task_thread_info(p)->task = p;

static inline unsigned long *end_of_stack(struct task_struct *p)
        return (unsigned long *)(p->thread_info + 1);


/* set thread flags in other task's structures
 * - see asm/thread_info.h for TIF_xxxx flags available
static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
        set_ti_thread_flag(task_thread_info(tsk), flag);

static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
        clear_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int 
        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int 
        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);

static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
        return test_ti_thread_flag(task_thread_info(tsk), flag);

static inline void set_tsk_need_resched(struct task_struct *tsk)

static inline void clear_tsk_need_resched(struct task_struct *tsk)

static inline int signal_pending(struct task_struct *p)
        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
static inline int need_resched(void)
        return unlikely(test_thread_flag(TIF_NEED_RESCHED));

 * cond_resched() and cond_resched_lock(): latency reduction via
 * explicit rescheduling in places that are safe. The return
 * value indicates whether a reschedule was done in fact.
 * cond_resched_lock() will drop the spinlock before scheduling,
 * cond_resched_softirq() will enable bhs before scheduling.
extern int cond_resched(void);
extern int cond_resched_lock(spinlock_t * lock);
extern int cond_resched_softirq(void);

 * Does a critical section need to be broken due to another
 * task waiting?:
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP)
# define need_lockbreak(lock) ((lock)->break_lock)
# define need_lockbreak(lock) 0

 * Does a critical section need to be broken due to another
 * task waiting or preemption being signalled:
static inline int lock_need_resched(spinlock_t *lock)
        if (need_lockbreak(lock) || need_resched())
                return 1;
        return 0;

/* Reevaluate whether the task has signals pending delivery.
   This is required every time the blocked sigset_t changes.
   callers must hold sighand->siglock.  */

extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t));
extern void recalc_sigpending(void);

extern void signal_wake_up(struct task_struct *t, int resume_stopped);

 * Wrappers for p->thread_info->cpu access. No-op on UP.

static inline unsigned int task_cpu(const struct task_struct *p)
        return task_thread_info(p)->cpu;

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
        task_thread_info(p)->cpu = cpu;


static inline unsigned int task_cpu(const struct task_struct *p)
        return 0;

static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)

#endif /* CONFIG_SMP */

extern void arch_pick_mmap_layout(struct mm_struct *mm);
static inline void arch_pick_mmap_layout(struct mm_struct *mm)
        mm->mmap_base = TASK_UNMAPPED_BASE;
        mm->get_unmapped_area = arch_get_unmapped_area;
        mm->unmap_area = arch_unmap_area;

extern long sched_setaffinity(pid_t pid, cpumask_t new_mask);
extern long sched_getaffinity(pid_t pid, cpumask_t *mask);

extern void normalize_rt_tasks(void);

#ifdef CONFIG_PM
 * Check if a process has been frozen
static inline int frozen(struct task_struct *p)
        return p->flags & PF_FROZEN;

 * Check if there is a request to freeze a process
static inline int freezing(struct task_struct *p)
        return p->flags & PF_FREEZE;

 * Request that a process be frozen
 * FIXME: SMP problem. We may not modify other process' flags!
static inline void freeze(struct task_struct *p)
        p->flags |= PF_FREEZE;

 * Wake up a frozen process
static inline int thaw_process(struct task_struct *p)
        if (frozen(p)) {
                p->flags &= ~PF_FROZEN;
                return 1;
        return 0;

 * freezing is complete, mark process as frozen
static inline void frozen_process(struct task_struct *p)
        p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN;

extern void refrigerator(void);
extern int freeze_processes(void);
extern void thaw_processes(void);

static inline int try_to_freeze(void)
        if (freezing(current)) {
                return 1;
        } else
                return 0;
static inline int frozen(struct task_struct *p) { return 0; }
static inline int freezing(struct task_struct *p) { return 0; }
static inline void freeze(struct task_struct *p) { BUG(); }
static inline int thaw_process(struct task_struct *p) { return 1; }
static inline void frozen_process(struct task_struct *p) { BUG(); }

static inline void refrigerator(void) {}
static inline int freeze_processes(void) { BUG(); return 0; }
static inline void thaw_processes(void) {}

static inline int try_to_freeze(void) { return 0; }

#endif /* CONFIG_PM */
#endif /* __KERNEL__ */


#ifndef __LINUX_SMP_H
#define __LINUX_SMP_H

 *      Generic SMP support
 *              Alan Cox. <alan@redhat.com>

#include <linux/config.h>

extern void cpu_idle(void);


#include <linux/preempt.h>
#include <linux/kernel.h>
#include <linux/compiler.h>
#include <linux/thread_info.h>
#include <asm/smp.h>

 * main cross-CPU interfaces, handles INIT, TLB flush, STOP, etc.
 * (defined in asm header):

 * stops all CPUs but the current one:
extern void smp_send_stop(void);

 * sends a 'reschedule' event to another CPU:
extern void smp_send_reschedule(int cpu);

 * Prepare machine for booting other CPUs.
extern void smp_prepare_cpus(unsigned int max_cpus);

 * Bring a CPU up
extern int __cpu_up(unsigned int cpunum);

 * Final polishing of CPUs
extern void smp_cpus_done(unsigned int max_cpus);

 * Call a function on all other processors
int smp_call_function(void(*func)(void *info), void *info, int retry, int wait);

 * Call a function on all processors
int on_each_cpu(void (*func) (void *info), void *info, int retry, int wait);

#define MSG_ALL_BUT_SELF        0x8000  /* Assume <32768 CPU's */
#define MSG_ALL                 0x8001

#define MSG_INVALIDATE_TLB      0x0001  /* Remote processor TLB invalidate */
#define MSG_STOP_CPU            0x0002  /* Sent to shut down slave CPU's
                                         * when rebooting
#define MSG_RESCHEDULE          0x0003  /* Reschedule request from master CPU*/
#define MSG_CALL_FUNCTION       0x0004  /* Call function on all other CPUs */

 * Mark the boot cpu "online" so that it can call console drivers in
 * printk() and can access its per-cpu storage.
void smp_prepare_boot_cpu(void);

#else /* !SMP */

 *      These macros fold the SMP functionality into a single CPU system
#define raw_smp_processor_id()                  0
#define hard_smp_processor_id()                 0
static inline int up_smp_call_function(void)
        return 0;
#define smp_call_function(func,info,retry,wait) (up_smp_call_function())
#define on_each_cpu(func,info,retry,wait)       \
        ({                                      \
                local_irq_disable();            \
                func(info);                     \
                local_irq_enable();             \
                0;                              \
static inline void smp_send_reschedule(int cpu) { }
#define num_booting_cpus()                      1
#define smp_prepare_boot_cpu()                  do {} while (0)

#endif /* !SMP */

 * smp_processor_id(): get the current CPU ID.
 * if DEBUG_PREEMPT is enabled the we check whether it is
 * used in a preemption-safe way. (smp_processor_id() is safe
 * if it's used in a preemption-off critical section, or in
 * a thread that is bound to the current CPU.)
 * NOTE: raw_smp_processor_id() is for internal use only
 * (smp_processor_id() is the preferred variant), but in rare
 * instances it might also be used to turn off false positives
 * (i.e. smp_processor_id() use that the debugging code reports but
 * which use for some reason is legal). Don't use this to hack around
 * the warning message, as your code might not work under PREEMPT.
  extern unsigned int debug_smp_processor_id(void);
# define smp_processor_id() debug_smp_processor_id()
# define smp_processor_id() raw_smp_processor_id()

#define get_cpu()               ({ preempt_disable(); smp_processor_id(); })
#define put_cpu()               preempt_enable()
#define put_cpu_no_resched()    preempt_enable_no_resched()

#endif /* __LINUX_SMP_H */

reply via email to

[Prev in Thread] Current Thread [Next in Thread]