/* Test of thread-specific storage in multithreaded situations. Copyright (C) 2005, 2008-2021 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ /* Whether to help the scheduler through explicit sched_yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 #include #include #include #include #include #if EXPLICIT_YIELD # include #endif #include #include /* Define ASSERT_STREAM before including this file if ASSERT must target a stream other than stderr. */ #ifndef ASSERT_STREAM # define ASSERT_STREAM stderr #endif /* ASSERT (condition); verifies that the specified condition is fulfilled. If not, a message is printed to ASSERT_STREAM if defined (defaulting to stderr if undefined) and the program is terminated with an error code. This macro has the following properties: - The programmer specifies the expected condition, not the failure condition. This simplifies thinking. - The condition is tested always, regardless of compilation flags. (Unlike the macro from .) - On Unix platforms, the tester can debug the test program with a debugger (provided core dumps are enabled: "ulimit -c unlimited"). - For the sake of platforms where no debugger is available (such as some mingw systems), an error message is printed on the error stream that includes the source location of the ASSERT invocation. */ #define ASSERT(expr) \ do \ { \ if (!(expr)) \ { \ fprintf (ASSERT_STREAM, "%s:%d: assertion '%s' failed\n", \ __FILE__, __LINE__, #expr); \ fflush (ASSERT_STREAM); \ abort (); \ } \ } \ while (0) #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() sched_yield () #else # define yield() #endif /* Returns a reference to the current thread as a pointer, for debugging. */ #define pthread_self_pointer() ((void *) (uintptr_t) pthread_self ()) static void perhaps_yield (void) { /* Call yield () only with a certain probability, otherwise the sequence of thread activations may be too predictable. */ if ((((unsigned int) rand () >> 3) % 4) == 0) yield (); } /* ----------------------- Test thread-local storage ----------------------- */ /* Number of simultaneous threads. */ #define THREAD_COUNT 16 /* Number of operations performed in each thread. */ #define REPEAT_COUNT 50000 #define KEYS_COUNT 4 static pthread_key_t mykeys[KEYS_COUNT]; static void * worker_thread (void *arg) { unsigned int id = (unsigned int) (uintptr_t) arg; int i, j, repeat; unsigned int values[KEYS_COUNT]; dbgprintf ("Worker %p started\n", pthread_self_pointer ()); /* Initialize the per-thread storage. */ for (i = 0; i < KEYS_COUNT; i++) { values[i] = (((unsigned int) rand () >> 3) % 1000000) * THREAD_COUNT + id; /* Hopefully no arithmetic overflow. */ if ((values[i] % THREAD_COUNT) != id) abort (); } perhaps_yield (); /* Verify that the initial value is NULL. */ dbgprintf ("Worker %p before initial verify\n", pthread_self_pointer ()); for (i = 0; i < KEYS_COUNT; i++) if (pthread_getspecific (mykeys[i]) != NULL) abort (); dbgprintf ("Worker %p after initial verify\n", pthread_self_pointer ()); perhaps_yield (); /* Initialize the per-thread storage. */ dbgprintf ("Worker %p before first pthread_setspecific\n", pthread_self_pointer ()); for (i = 0; i < KEYS_COUNT; i++) { unsigned int *ptr = (unsigned int *) malloc (sizeof (unsigned int)); *ptr = values[i]; ASSERT (pthread_setspecific (mykeys[i], ptr) == 0); } dbgprintf ("Worker %p after first pthread_setspecific\n", pthread_self_pointer ()); perhaps_yield (); /* Shuffle around the pointers. */ for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { dbgprintf ("Worker %p doing value swapping\n", pthread_self_pointer ()); i = ((unsigned int) rand () >> 3) % KEYS_COUNT; j = ((unsigned int) rand () >> 3) % KEYS_COUNT; if (i != j) { void *vi = pthread_getspecific (mykeys[i]); void *vj = pthread_getspecific (mykeys[j]); ASSERT (pthread_setspecific (mykeys[i], vj) == 0); ASSERT (pthread_setspecific (mykeys[j], vi) == 0); } perhaps_yield (); } /* Verify that all the values are from this thread. */ dbgprintf ("Worker %p before final verify\n", pthread_self_pointer ()); for (i = 0; i < KEYS_COUNT; i++) if ((*(unsigned int *) pthread_getspecific (mykeys[i]) % THREAD_COUNT) != id) abort (); dbgprintf ("Worker %p after final verify\n", pthread_self_pointer ()); perhaps_yield (); dbgprintf ("Worker %p dying.\n", pthread_self_pointer ()); return NULL; } static void test_tss (void) { int pass, i; for (pass = 0; pass < 2; pass++) { pthread_t threads[THREAD_COUNT]; if (pass == 0) for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_create (&mykeys[i], free) == 0); else for (i = KEYS_COUNT - 1; i >= 0; i--) ASSERT (pthread_key_create (&mykeys[i], free) == 0); /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&threads[i], NULL, worker_thread, (void *) (uintptr_t) i) == 0); /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (threads[i], NULL) == 0); for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_delete (mykeys[i]) == 0); } } #undef KEYS_COUNT #undef REPEAT_COUNT #undef THREAD_COUNT /* --------------- Test thread-local storage with destructors --------------- */ /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of keys to allocate in each thread. */ #define KEYS_COUNT 10 static pthread_mutex_t sumlock; static uintptr_t sum; static void inc_sum (uintptr_t value) { ASSERT (pthread_mutex_lock (&sumlock) == 0); sum += value; ASSERT (pthread_mutex_unlock (&sumlock) == 0); } static void destructor0 (void *value) { if ((((uintptr_t) value - 1) % 10) != 0) abort (); inc_sum ((uintptr_t) value); } static void destructor1 (void *value) { if ((((uintptr_t) value - 1) % 10) != 1) abort (); inc_sum ((uintptr_t) value); } static void destructor2 (void *value) { if ((((uintptr_t) value - 1) % 10) != 2) abort (); inc_sum ((uintptr_t) value); } static void destructor3 (void *value) { if ((((uintptr_t) value - 1) % 10) != 3) abort (); inc_sum ((uintptr_t) value); } static void destructor4 (void *value) { if ((((uintptr_t) value - 1) % 10) != 4) abort (); inc_sum ((uintptr_t) value); } static void destructor5 (void *value) { if ((((uintptr_t) value - 1) % 10) != 5) abort (); inc_sum ((uintptr_t) value); } static void destructor6 (void *value) { if ((((uintptr_t) value - 1) % 10) != 6) abort (); inc_sum ((uintptr_t) value); } static void destructor7 (void *value) { if ((((uintptr_t) value - 1) % 10) != 7) abort (); inc_sum ((uintptr_t) value); } static void destructor8 (void *value) { if ((((uintptr_t) value - 1) % 10) != 8) abort (); inc_sum ((uintptr_t) value); } static void destructor9 (void *value) { if ((((uintptr_t) value - 1) % 10) != 9) abort (); inc_sum ((uintptr_t) value); } static void (*destructor_table[10]) (void *) = { destructor0, destructor1, destructor2, destructor3, destructor4, destructor5, destructor6, destructor7, destructor8, destructor9 }; static pthread_key_t dtorcheck_keys[THREAD_COUNT][KEYS_COUNT]; /* Worker thread that uses destructors that verify that the destructor belongs to the right thread. */ static void * dtorcheck1_thread (void *arg) { unsigned int id = (unsigned int) (uintptr_t) arg; pthread_key_t *keys = dtorcheck_keys[id]; /* an array of KEYS_COUNT keys */ int i; for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0); for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_setspecific (keys[i], (void *) (uintptr_t) (10 * id + i + 1)) == 0); return NULL; } static void test_tss_dtorcheck1 (void) { pthread_t threads[THREAD_COUNT]; unsigned int id; int i; uintptr_t expected_sum; sum = 0; /* Spawn the threads. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_create (&threads[id], NULL, dtorcheck1_thread, (void *) (uintptr_t) id) == 0); /* Wait for the threads to terminate. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_join (threads[id], NULL) == 0); /* Clean up the keys. */ for (id = 0; id < THREAD_COUNT; id++) for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_delete (dtorcheck_keys[id][i]) == 0); /* Check that the destructor was invoked for each key. */ expected_sum = 10 * KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2) + THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2) + THREAD_COUNT * KEYS_COUNT; if (sum != expected_sum) abort (); } /* Worker thread that uses destructors that verify that the destructor belongs to the right key allocated within the thread. */ static void * dtorcheck2_thread (void *arg) { unsigned int id = (unsigned int) (uintptr_t) arg; pthread_key_t *keys = dtorcheck_keys[id]; /* an array of KEYS_COUNT keys */ int i; for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_create (&keys[i], destructor_table[id]) == 0); for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_setspecific (keys[i], (void *) (uintptr_t) (10 * i + id + 1)) == 0); return NULL; } static void test_tss_dtorcheck2 (void) { pthread_t threads[THREAD_COUNT]; unsigned int id; int i; uintptr_t expected_sum; sum = 0; /* Spawn the threads. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_create (&threads[id], NULL, dtorcheck2_thread, (void *) (uintptr_t) id) == 0); /* Wait for the threads to terminate. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_join (threads[id], NULL) == 0); /* Clean up the keys. */ for (id = 0; id < THREAD_COUNT; id++) for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_delete (dtorcheck_keys[id][i]) == 0); /* Check that the destructor was invoked for each key. */ expected_sum = 10 * THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2) + KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2) + THREAD_COUNT * KEYS_COUNT; if (sum != expected_sum) abort (); } #undef KEYS_COUNT #undef THREAD_COUNT /* --- Test thread-local storage with with races between init and destroy --- */ /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of keys to allocate in each thread. */ #define KEYS_COUNT 10 /* Number of times to destroy and reallocate a key in each thread. */ #define REPEAT_COUNT 100000 static pthread_key_t racecheck_keys[THREAD_COUNT][KEYS_COUNT]; /* Worker thread that does many destructions and reallocations of keys, and also uses destructors that verify that the destructor belongs to the right key. */ static void * racecheck_thread (void *arg) { unsigned int id = (unsigned int) (uintptr_t) arg; pthread_key_t *keys = racecheck_keys[id]; /* an array of KEYS_COUNT keys */ int repeat; int i; dbgprintf ("Worker %p started\n", pthread_self_pointer ()); for (i = 0; i < KEYS_COUNT; i++) { ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0); ASSERT (pthread_setspecific (keys[i], (void *) (uintptr_t) (10 * id + i + 1)) == 0); } for (repeat = REPEAT_COUNT; repeat > 0; repeat--) { i = ((unsigned int) rand () >> 3) % KEYS_COUNT; dbgprintf ("Worker %p reallocating key %d\n", pthread_self_pointer (), i); ASSERT (pthread_key_delete (keys[i]) == 0); ASSERT (pthread_key_create (&keys[i], destructor_table[i]) == 0); ASSERT (pthread_setspecific (keys[i], (void *) (uintptr_t) (10 * id + i + 1)) == 0); } dbgprintf ("Worker %p dying.\n", pthread_self_pointer ()); return NULL; } static void test_tss_racecheck (void) { pthread_t threads[THREAD_COUNT]; unsigned int id; int i; uintptr_t expected_sum; sum = 0; /* Spawn the threads. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_create (&threads[id], NULL, racecheck_thread, (void *) (uintptr_t) id) == 0); /* Wait for the threads to terminate. */ for (id = 0; id < THREAD_COUNT; id++) ASSERT (pthread_join (threads[id], NULL) == 0); /* Clean up the keys. */ for (id = 0; id < THREAD_COUNT; id++) for (i = 0; i < KEYS_COUNT; i++) ASSERT (pthread_key_delete (racecheck_keys[id][i]) == 0); /* Check that the destructor was invoked for each key. */ expected_sum = 10 * KEYS_COUNT * (THREAD_COUNT * (THREAD_COUNT - 1) / 2) + THREAD_COUNT * (KEYS_COUNT * (KEYS_COUNT - 1) / 2) + THREAD_COUNT * KEYS_COUNT; if (sum != expected_sum) abort (); } #undef REPEAT_COUNT #undef KEYS_COUNT #undef THREAD_COUNT /* -------------------------------------------------------------------------- */ int main () { /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); { pthread_mutexattr_t attr; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0); ASSERT (pthread_mutex_init (&sumlock, &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } printf ("Starting test_tss ..."); fflush (stdout); test_tss (); printf (" OK\n"); fflush (stdout); printf ("Starting test_tss_dtorcheck1 ..."); fflush (stdout); test_tss_dtorcheck1 (); printf (" OK\n"); fflush (stdout); printf ("Starting test_tss_dtorcheck2 ..."); fflush (stdout); test_tss_dtorcheck2 (); printf (" OK\n"); fflush (stdout); printf ("Starting test_tss_racecheck ..."); fflush (stdout); test_tss_racecheck (); printf (" OK\n"); fflush (stdout); return 0; }