
1 Differential Calculus

“The calculus was the first achievement of modern mathematics and it is diffi-

cult to overestimate its importance. I think it defines more unequivocally than

anything else the inception of modern mathematics; and the system of mathe-

matical analysis, which is its logical development, still constitutes the greatest

technical advance in exact thinking.”

JOHN VON NEUMANN

“Each problem that I solved became a rule which served afterward to solve

other problems”

RENÉ DESCARTES

1.1 Introduction

Calculus is fundamentally different from the mathematics you have studied previously.

Calculus is less static and more dynamic. It is concerned with change and motion. It deals

with quantities that approach other quantities. For that reason it may be useful to have

an overview of the subject before beginning its intensive study. In this section we give a

glimpse of some of the main ideas of calculus by showing how limits arise when we attempt

to solve a variety of problems.

1.1.1 The Area problem

The origins of calculus go back at least 2500 years to the ancient Greeks, who found areas

using the “method of exhaustion”. They knew how to find the area A of any polygon by

dividing it into triangles as in Figure 1 and adding the areas of these triangles. It is a much

more difficult problem to find the area of a curved figure. The Greek method of exhaustion

was to inscribe polygons in the figure and circumscribe polygons about the figure and then

let the number of sides of the polygon increase. Figure 2 illustrates the special case of a

circle with inscribed regular polygons. Let An be the area of the inscribed polygon with
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n sides. As n increases, it appears that An becomes closer and closer to the area of the

circle. We say the area of the circle is the limit of the areas of the inscribed polygons, and

we write

A = lim
n→∞

An

The Greeks themselves did not use limits explicitly. However, by indirect reasoning, Eu-

doxus (5th century BC) used exhaustion to prove the familiar formula for the area of a

circle: A = πr2. The area problem is the central problem in the branch of calculus called

integral calculus.

1.1.2 The Tangent Problem

A traditional slingshot is essentially a rock on the end of a string, which you rotate around

in a circular motion and then release. When you release the string, in which direction will

the rock travel? Many people mistakenly believe that the rock will follow a curved path.

Newton’s First Law of Motion tells us that the path is straight. In fact, the rock follows a

path along the tangent line to the circle, at the point of release.

If we wanted to determine the path followed by the rock, we could do so, as tangent lines

to circles are relatively easy to find. (Recall, from elementary geometry that a tangent line

to a circle is a line that intersects the circle in exactly one point.) More generally, consider

the problem of trying to find the equation of the tangent line t to a curve with equation

y = f(x) at a given point P . See Figure 3. Since we know that the point P lies on the

tangent line, we can find out the equation of t if we know its slope m. The problem is that

we need two points to compute the slope and we only have one, namely P on t. To get

around the problem we first find an approximation to m by taking a nearby point Q on

the curve and computing the slope mPQ of the secant line PQ. From Figure 4 we see that

mPQ =
f(x)− f(a)

x− a
(1)

Now imagine that Q moves along the curve toward P as in Figure 5. You can see that the

secant line rotates and approaches the tangent line as its limiting position. This means
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that the slope mPQ of the secant line becomes closer and closer to the slope m of the

tangent line. We write

m = lim
Q→P

mPQ

and we say that m is the limit of mPQ as Q approaches P along the curve. Since x

approaches a as Q approaches P , we could also use Equation (1) to write

m = lim
x→a

f(x)− f(a)

x− a
(2)

The tangent problem has given rise to the branch of calculus called differential calculus,

which was not invented until more than 2000 years after the integral calculus.

1.1.3 Summary

We have seen that the concept of a limit arises in trying to find the area of a region and

the slope of a tangent to a curve. In both these cases the common theme is the calculation

of a quantity as a limit of other, easily calculated, quantities. It is this basic idea of a limit

that sets calculus apart from other areas of mathematics. In fact, we could define calculus

as the part of mathematics that deals with limits. Sir Isaac Newton invented his version

of calculus in order to explain the motion of the planets around the sun. Today calculus

is used not only in calculating the orbits of satellites and spacecraft and in the study

of astronomy, nuclear physics, electricity, thermodynamics, acoustics, design of machines,

chemical reactions, growth of organisms, weather prediction and the calculation of life

insurance premiums, but also in such every day concerns as fencing off a field so as to

enclose the maximum area or computing the most economical speed for driving a car.

1.2 Derivatives

In this chapter we begin our study of differential calculus, which is concerned with how

one quantity changes in relation with another quantity. The central concept of differential

calculus is the derivative. After learning how to calculate derivatives, we use them to solve
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problems involving rates of change.

Definition: The derivative of a function f at a number a, denoted by f ′(a), is

f ′(a) = lim
h→0

f(a + h)− f(a)

h
(3)

if this limit exists.

Example 1 Find the derivative of the function f(x) = x2 − 8x + 9 at the number a.

Solution From definition (3) we have

f ′(a) = lim
h→0

f(a + h)− f(a)

h

= lim
h→0

[(a + h)2 − 8(a + h) + 9]− [a2 − 8a + 9]

h

= lim
h→0

a2 + 2ah + h2 − 8a− 8h + 9− a2 + 8a− 9

h

= lim
h→0

2ah + h2 − 8h

h

= lim
h→0

h(2a + h− 8)

h
= 2a− 8

Other notations If we use the traditional notation y = f(x) to indicate that the indepen-

dent variable is x and the dependent variable is y, then some common alternative notations

for the derivative are as follows:

f ′(x) = y′ =
dy

dx
=

df

dx
=

d

dx
f(x) = Df(x) = Dxf(x)

The symbols D and d/dx are called differential operators because they indicate the

operation of differentiation, which is the process of calculating a derivative.

Note

Though we choose to use a fractional form of representation, dy
dx

is a limit and IS NOT a

fraction, i.e. dy
dx

does not mean dy÷dx. dy
dx

means y differentiated with respect to x. Thus,
dp
dx

means p differentiated with respect to x. The ‘ d
dx

’ is the “operator”, operating on some

function of x.
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Example 2 If f(x) = 4x + 2x2, find f ′(x) from first principles and hence calculate

f ′(2). Solution

f ′(x) =
dy

dx
= lim

h→0

[
f(x + h)− f(x)

h

]

= lim
h→0

[
4(x + h) + 2(x + h)2 − 4x− 2x2)

h

]

= lim
h→0

[
4h + 4xh + 2h2

h

]
= lim

h→0
[4 + 4x + 2h]

= 4 + 4x

since

f ′(x) = 4 + 4x

then

f ′(2) = 4 + 4(2) = 12

1.2.1 Exercises

1. Draw the graph of y = x2 + x− 6 for −5 ≤ x ≤ 6. Draw the tangents to this curve

at x = 3, x = 1 and x = −2, and hence find a value for the gradient of the curve at

each of these points.

2. Draw the graph of

y =
x2 − 4x

4

for 0 ≤ x ≤ 6. Draw tangents to the curve at x = 4, x = 3 and x = 2 and hence find

a value for the gradient of the curve at each of these points.

3. Differentiate each of the following from first principles to find dy
dx

(a) y = 5x

(b) y = 9x + 5
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(c) y = 3x2

(d) y = x3

(e) y = x2 + 3x

(f) y = 5x− x2 + 7

(g) y = 1
x

(h) y = 1
x2

4. If f(x) = 3x−2x2 find f ′(x) from first principles and hence evaluate f ′(4) and f ′(−1)

5. If f(x) = 2x2 + 5x− 3 find f ′(x) from first principles and hence evaluate f ′(−1) and

f ′(−2)

6. If f(x) = x3 − 2x find f ′(x) from first principles and hence evaluate f ′(1),f ′(0) and

f ′(−1)

1.3 Differentiation Rules

In order to avoid differentiating functions from first principles, as we have done in the

previous section we can establish certain rules.

Rule 1

If f is a constant function, f(x) = c, then f ′(x) = 0

In Leibniz notation Rule 1 can be written as

d

dx
c = 0 (4)

This result is geometrically evident because the graph of a constant function is an horizontal

line, which has slope 0.

Rule 2 - The Power Rule
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If f(x) = xn, where n is an integer, then

f ′(x) = nxn−1

The Power Rule can be written in Leibniz notation as

d

dx
(xn) = nxn−1 (5)

Example

1. If f(x) = x6, then f ′(x) = 6x5.

2. If y = x1000, then y′ = 1000x999.

3. If y = t4, then dy
dt

= 4t3.

4. d
dr

(r3) = 3r2.

5. Du(u
m) = mum−1.

The next rule is best written in Leibniz notation when seen for the first time:

Rule 3 - Linearity of Differentiation

If c is a constant and both f and g are differentiable, then

• d
dx

(cf) = c df
dx

• d
dx

(f + g) = df
dx

+ dg
dx

Summary

d
dx

c = 0 d
dx

(xn) = nxn−1 d
dx

(cf) = c df
dx

d
dx

(f + g) = df
dx

+ dg
dx
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1.3.1 Exercises

1. Differentiate the following functions with respect to x

(a) x5

(b) x3

(c) 12x2

(d) 5x4

(e) 3x2

(f) 7

(g) x5/3

(h) x3/4

(i) x2/5

(j) 8x1/4

(k)
√

x

(l)
√

x3

(m) 2/x

(n) 3/x2

2. Find the gradient function dy
dx

for each of the following

(a) y = x2 + 7x− 4

(b) y = x− 7x2

(c) y = x3 + 7x2 − 2

(d) y = 3x2 + 7x− 4 + 1
x

(e) y = (x + 3)(x− 1)

(f) y = (2x + 3)(x + 2)

3. Find the gradients of the following lines at the points indicated

(a) y = x2 + 4x at (0, 0)
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(b) y = 5x− x2 at (1, 4)

(c) y = 3x3 − 2x at (2, 20)

(d) y = 5x + x3 at (−1,−6)

(e) y = 3x + 1
x

at (1, 4)

(f) y = 2x2 − x + 4
x

at (2, 8)

4. Find the coordinates of any points of the following lines where the gradient is stated

(a) y = x2, gradient 8

(b) y = x2, gradient −8

(c) y = x2 − 4x + 5, gradient 2

(d) y = 5x− x2, gradient 3

(e) y = x4 + 2, gradient −4

(f) y = x3 + x2 − x + 1, gradient 0

5. If f(x) = x3 + 4x find

(a) f(1)

(b) f ′(x)

(c) f ′(1)

(d) f”(x)

(e) f”(1)

6. I will add more exercises here

1.4 Curve sketching - Maximum, minimum and points of inflec-

tion

Suppose we are given that f(x) = ax3 + bx2 + cx + d and we are asked to sketch the graph

of this function. We will use our new found knowledge of calculating derivatives to solve

this problem. There are FIVE steps to be followed:
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1. If a > 0, then the shape of the graph is from left to right, maxima then minima.

If a < 0, then the shape of the graph is from left to right, minima then maxima.

2. Determine the value of the y-intercept by substituting x = 0 into f(x)

3. Determine the x-intercepts by substituting y = 0 and factorising the expression.

First try to find a common factor, or to group terms together. If this fails, use the

factor theorem.

4. Find the turning points of the function by evaluationg the derivative df
dx

and setting

it to zero.

5. Determine the y-coordinates of the turning points

6. Step 6 of 5, Draw a neat sketch.

Example

Draw the Graph of f(x) = x3 + 3x2

Solution

1. a is positive so shape of graph is maxima, minima

2. y-intercept: y = x3 + 3x2 therefore y(0) = 0.

3. x-intercepts:

x3 + 3x2 = 0

x2(x + 3) = 0

x = 0 or x = −3

4. Turning points:

dy

dx
= 3x2 + 6x set this to zero

0 = 3x2 + 6x

0 = 3x(x + 2)

x = 0 or x = −2
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5. y-coordinate of the turning points:

y(0) = 0 and y(−2) = (−2)3 + 3(−2)2 = 4

Local max at (−2; 4) and local min at (0; 0)

6. Draw a neat sketch.

1.4.1 Exercises

1.5 Small changes

I will discuss rates of change and give examples from physics, chemistry, biology and

economics.

1.5.1 Exercises

11


