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Chapter 1. Introduction
The Parallel Object-Oriented Methods and Applications (POOMA) Toolkit is a C++
toolkit for writing high-performance scientific programs. The toolkit provides a variety
of tools:

• containers and other abstractions suitable for scientific computation,
• support for a variety of computation modes including data-parallel expressions,

stencil-based computations, and lazy evaluation,
• support for writing parallel and distributed programs,
• automatic creation of all interprocessor communication for parallel and distributed

programs, and
• automatic out-of-order execution and loop rearrangement for fast program execution.
Since the toolkit provides high-level abstractions, POOMA programs are much shorter
than corresponding Fortran or C programs and require less time to write and less time to
debug. Using these high-level abstractions, the same code runs on a sequential, parallel,
and distributed computers. It runs almost as fast as carefully crafted machine-specific
hand-written programs. The toolkit is open-source software, available for no cost, and
compatible with any modern C++ compiler.

1.1. POOMA Goals
The goals for the POOMA Toolkit have remained unchanged since its conception in
1994:

1. Code portability across serial, distributed, and parallel architectures without any
change to the source code.

2. Development of reusable, cross-problem-domain components to enable rapid appli-
cation development.

3. Code efficiency for kernels and components relevant to scientific simulation.

4. Toolkit design and development driven by applications from a diverse set of scien-
tific problem domains.

5. Shorter time from problem inception to working parallel simulations.
Below, we discuss how POOMA achieves these goals.
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Chapter 1. Introduction

Code Portability for Sequential and Distributed Programs
The same POOMA programs run on sequential, distributed, and parallel computers. No
change in source code is required. Two or three lines specify how each container’s data
should be distributed among available processors. Using these directives and run-time
information about the computer’s configuration, the toolkit automatically distributes
pieces of the container domains, calledpatches, among the available processors. If a
computation needs values from another patch, POOMA automatically passes the values
to the patch where it is needed. The same program, and even the same executable, works
regardless of the number of the available processors and the size of the containers’ do-
mains. A programmer interested in only sequential execution can omit the two or three
lines specifying how the domains are to be distributed.

Rapid Application Development
The POOMA Toolkit is designed to enable rapid development of scientific and dis-
tributed applications. For example, its vector, matrix, and tensor classes model the cor-
responding mathematical concepts. ItsArray andField classes model the discrete
spaces and mathematical arrays frequently found in computational science and math. See
Figure 1-1. The left column indicates theoretical science and math concepts, the mid-
dle column computational science and math concepts, and the right column computer
science implementations. For example, theoretical physics frequently uses continuous
fields in three-dimension space, while algorithms for a corresponding computational
physics problem usually uses discrete fields. POOMA containers, classes, and functions
ease engineering computer programs for these algorithms. For example, the POOMA
Field container models discrete fields: both map locations in discrete space to val-
ues and permit computations of spatial distances and values. The POOMAArray
container models the mathematical concept of an array, frequently used in numerical
analysis.

Figure 1-1. How POOMA Fits Into the Scientific Process

In the translation from theoretical science to computational science to computer pro-
grams, POOMA eases the implementation of algorithms as computer programs.
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POOMA containers support a variety of computation modes, easing translation of al-
gorithms into code. For example, many algorithms for solving partial differential equa-
tions use stencil-based computations so POOMA supports stencil-based computations
on Array s andField s. POOMA also supports data-parallel computation similar to
Fortran 90 syntax. To ease implementing computations where oneField ’s values are
a function of several otherField ’s values, the programmer can specify arelation. Re-
lations are lazily evaluated: whenever the dependentField ’s values are needed and
they are dependent on aField whose values have changed, the values are computed.
Relations also assists correctness by eliminating the frequently forgotten need for a pro-
grammer to ensure aField ’s values are up-to-date before being used.

Efficient Code
POOMA incorporates a variety of techniques to ensure it produces code that executes
as quickly as special-case, hand-written code. These techniques include extensive use
of templates, out-of-order evaluation, use of guard layers, and production of fast inner
loops.

POOMA’s uses of C++ templates ensures as much as work as possible occurs at com-
pile time, not run time. This speeds programs’ execution. Since more code is produced
at compile time, more code is available to the compiler’s optimizer, further speeding
execution. The POOMAArray container benefits from the use of template param-
eters. Their use permits the use of specialized data storage classes calledengines. An
Array ’s Engine template parameter specifies how data is stored and indexed. Some
Array s expect almost all values to be used, while others might be mostly empty. In
the latter case, using a specialized engine storing the few nonzero values greatly reduces
storage requirements. Using engines also permits fast creation of container views, known
asarray sectionsin Fortran 90. A view’s engine is the same as the original container’s
engine, but the view object’s restricted domain is a subset of the original domain. Space
requirements and execution time to use views are minimal.

Using templates also permits containers to support polymorphic indexing, e.g., index-
ing both by integers and by three-dimensional coordinates. A container uses templatized
indexing functions that defer indexing operations to its engine’s index operators. Since
the container uses templates, theEngine can define indexing functions with different
function arguments, without the need to add corresponding container functions. Some of
these benefits of using templates can be expressed without them, but doing so increases
execution time. For example, a container could have a pointer to an engine object, but
this requires a pointer dereference for each operation. Implementing polymorphic index-
ing without templates would require adding virtual functions corresponding to each of
the indexing functions.
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To ensure multiprocessor POOMA programs execute quickly, it is important that inter-
processor communication overlaps with intraprocessor computations as much as possi-
ble and that communication is minimized. Asynchronous communication, out-of-order
evaluation, and use of guard layers all help achieve these goals. POOMA uses the asyn-
chronous communication facilities of the Cheetah communication library. When a pro-
cessor needs data that is stored or computed by another processor, a message is sent
between the two. If synchronous communication was used, the sender must issue an ex-
plicit send, and the recipient must issue an explicit receive, synchronizing the two pro-
cessors. Cheetah permits the sender to put and get data without synchronizing with the
recipient processor, and it also permits invoking functions at remote sites to ensure de-
sired data is up-to-date. Thus, out-of-order evaluation must be supported. Out-of-order
evaluation also has another benefit: Only computations directly or indirectly related to
values that are printed need occur.

Surrounding a patch withguard layerscan help reduce interprocessor communication.
For distributed computation, each container’s domain is split into pieces distributed
among the available processors. Frequently, computing a container value is local, in-
volving just the value itself and a few neighbors, but computing a value near the edge
of a processor’s domain may require knowing a few values from a neighboring domain.
Guard layers permit these values to be copied locally so they need not be repeatedly
communicated.

POOMA uses the PETE Library to ensure inner loops involving POOMA’s object-
oriented containers run as quickly as hand-coded loops. PETE (the Portable Expression
Template Engine) uses expression-template technology to convert data-parallel state-
ments into efficient loops without any intermediate computations. For example, consider
evaluating the statement

A += -B + 2 * C;

whereA andCarevector<double> s andB is avector<int> . Naïve evalua-
tion might introduce intermediaries for-B , 2*C , and their sum. The presence of these
intermediaries in inner loops can measurably slow performance. To produce a loop with-
out intermediaries, PETE stores each expression as a parse tree. Using its templates, the
parse tree is converted, at compile time, to a loop directly evaluating each component of
the result without computing intermediate values. For example, the code corresponding
to the statement above is

vector<double>::iterator iterA = A.begin();
vector<int>::const_iterator iterB = B.begin();
vector<double>::const_iterator iterC = C.begin();

11
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while (iterA != A.end()) {
*iterA += -*iterB + 2 * *iterC;
++iterA; ++iterB; ++iterC;

}

Furthermore, since the code is available at compile time, not run time, it can be further
optimized, e.g., moving any loop-invariant code out of the loop.

Used for Diverse Set of Scientific Problems
POOMA has been used to solve a wide variety of scientific problems. Most recently,
physicists at Los Alamos National Laboratory implemented an entire library of hydro-
dynamics codes as part of the U.S. government’s science-based Stockpile Stewardship
Program. Other applications include a matrix solver, an accelerator code simulating the
dynamics of high-intensity charged particle beams in linear accelerators, and a Monte
Carlo neutron transport code.

Easy Implementation
POOMA’s tools greatly reduce the time to implement applications. As we noted above,
POOMA’s containers and expression syntax model the computational models and algo-
rithms most frequently found in scientific programs. These high-level tools are known
to be correct and reduce the time to debug programs. Since the same programs run on
one processor and multiple processors, programmers can write and test programs us-
ing their one or two-processor personal computers. With no additional work, the same
program runs on computers with hundreds of processors; the code is exactly the same,
and the toolkit automatically handles distribution of the data, all data communication,
and all synchronization. The net result is a significant reduction in programming time.
For example, a team of two physicists and two support people at Los Alamos National
Laboratory implemented a suite of hydrodynamics kernels in six months. Their work
replaced a previous suite of less-powerful kernels which had taken sixteen people sev-
eral years to implement and debug. Despite not have previously implemented any of the
kernels, they implemented one new kernel every three days, including the time to read
the corresponding scientific papers!

1.2. POOMA is Open-Source Software
The POOMA Toolkit is open-source software. Anyone may download, read, redistribute,
and modify the POOMA source code. If an application requires a specialized container
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not already available, any programmer may add it. Any programmer can extend it to
solve problems in previously unsupported domains. Companies using the toolkit can
read the source code to ensure it has no security holes. It may be downloaded at no
cost and used for perpetuity. There are no annual licenses and no on-going costs. By
keeping their own copies, companies are guaranteed the software will never disappear.
In summary, the POOMA Toolkit is low-risk software.

1.3. History of POOMA
The POOMA Toolkit was developed at Los Alamos National Laboratory to assist nu-
clear fusion and fission research. In 1994, the toolkit grew out of the Object-Oriented
Particle Simulation Class Library developed for particle-in-cell simulations. The goals
of the Framework, as it was called at the time, were driven by the Numerical Tokamak’s
“Parallel Platform Paradox”:

The average time required to implement a moderate-sized application on a parallel computer
architecture is equivalent to the half-life of the latest parallel supercomputer.

The framework’s goal of being able to quickly write efficient scientific code that could
be run on a wide variety of platforms remains unchanged today. Development, mainly at
the Advanced Computing Laboratory at Los Alamos, proceeded rapidly. A matrix solver
application was written using the framework. Support for hydrodynamics, Monte Carlo
simulations, and molecular dynamics modeling soon followed.

By 1998, POOMA was part of the U.S. Department of Energy’s Accelerated Strate-
gic Computing Initiative (ASCI). The Comprehensive Test Ban Treaty forbid nuclear
weapons testing so they were instead simulated using computers. ASCI’s goal was to
radically advance the state of the art in high-performance computing and numerical sim-
ulations so the nuclear weapon simulations could use 100-teraflop parallel computers.
A linear accelerator code linac and a Monte Carlo neutron transport code MC++ were
among the codes written.

POOMA 2 involved a new conceptual framework and a complete rewriting of the source
code to improve performance. TheArray class was introduced with its use ofEn-
gine s, separating container use from container storage. A new asynchronous sched-
uler permitted out-of-order execution to improve cache coherency. Incorporating the
Portable Expression Template Engine (PETE) permitted faster loop execution. Soon,
container views andConstantFunction andIndexFunction Engine s
were added. Release 2.1.0 includedField s with their spatial extent andDynami-
cArray s with the ability to dynamically change domain size. Support for particles
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and their interaction withField s were added. The POOMA messaging implementa-
tion was revised in release 2.3.0. Use of the Cheetah Library separated POOMA from
the actual messaging library used, and support for applications running on clusters of
computers was added. CodeSourcery, LLC (http://www.codesourcery.com/), and
Proximation, LLC (http://www.proximation.com/), took over POOMA develop-
ment from Los Alamos National Laboratory. During the past two years, theField
abstraction and implementation was improved to increase its flexibility, add support for
multiple values and materials in the same cell, and permit lazy evaluation. Simultane-
ously, the execution speed of the inner loops was greatly increased.

14
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Chapter 2. Programming with
Templates

POOMA extensively uses C++templates to support type polymorphism without incur-
ring any run-time cost. In this chapter, we briefly introduce using templates in C++
programs by relating them to “ordinary” C++ constructs such as values, objects, and
classes. The two main concepts underlying C++ templates will occur repeatedly:

• Template programming constructs execute at compile time, not run time. That is, tem-
plate operations occur within the compiler, not when a program runs.

• Templates permit declaring families of classes using a single declaration. For exam-
ple, theArray template declaration permits usingArray s with many different
value types, e.g., arrays of integers, arrays of floating point numbers, and arrays of
arrays.

For those interested in the implementation of POOMA, we close the section with a
discussion of some template programming concepts used in the implementation but not
likely to be used by POOMA users.

2.1. Templates Execute at Compile-Time
POOMA uses C++ templates to support type polymorphism without incurring any run-
time cost as a program executes. All template operations are performed at compile time
by the compiler.

Prior to the introduction of templates, almost all of a program’s interesting computation
occurred when it was executed. When writing the program, the programmer, atprogram-
ming time, would specify which statements and expressions will occur and which types
to use. Atcompile time, the compiler would convert the program’s source code into an
executable program. Even though the compiler uses the types to produce the executable,
no interesting computation would occur. Atrun time, the resulting executable program
would actually perform the operations.

The introduction of templates permits interesting computation to occur while the com-
piler produces the executable. Most interesting is template instantiation, which produces
a type at compile time. For example, theArray “type” definition requires template pa-
rametersDim, T, andEngineTag , specifying its dimension, the type of its values,
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and itsEngine type. To use this, a programmer specifies values for the template pa-
rameters:Array<2,double,Brick> specifies a dimension of 2, a value type
of double , and theBrick Engine type. At compile time, the compiler creates a
type definition by substituting the values for the template parameters in the templatized
type definition. The substitution is analogous to the run-time application of a function to
specific values.

All computation not involving run-time input or output can occur at programming time,
compile time, or run time, whichever is more convenient. At programming time, a pro-
grammer can perform computations by hand rather than writing code to compute it.
C++ templates are Turing-complete so they can compute anything computable. Unfor-
tunately, syntax for compile-time computation is more difficult than for run-time com-
putation. Also current compilers are not as efficient as code executed by hardware. Run-
time C++ constructs are Turing-complete so using templates is unnecessary. Thus, we
can shift computation to the time which best trades off the ease of expressing syntax
with the speed of computation by programmer, compiler, or computer chip. For ex-
ample, POOMA uses expression template technology to speed run-time execution of
data-parallel statements. The POOMA developers decided to shift some of the computa-
tion from run-time to compile-time using template computations. The resulting run-time
code runs more quickly, but compiling the code takes longer. Also, programming time
for the POOMA developers increased significantly, but, most users, who are usually
most concerned about decreasing run times, benefited.

2.2. Template Programming for POOMA Users
Most POOMA users need only understand a subset of available constructs for template
programming. These constructs include

• reading template declarations and understanding template parameters, both of which
are used in this book.

• template instantiation, i.e., specifying a particular type by specifying values for tem-
plate parameters.

• nested type names, which are types specified within a class definition.
We discuss each of these below.

Templates generalize writing class declarations by permitting class declarations depen-
dent on other types. For example, consider writing a class storing a pair of integers and
a class storing a pair of doubles. See Example 2-1. Almost all of the code for the two
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definitions is the same. Both of these definitions define a class with a constructor and
storing two values namedleft andright having the same type. Only the classes’
names and its use of types differ.

Example 2-1. Classes Storing Pairs of Values

// Declare a class storing a pair of integers.
struct pairOfInts {

pairOfInts(const int& left, const int& right)
: left_(left), right_(right) {}

int left_;
int right_;

};

// Declare a class storing a pair of doubles.
struct pairOfDoubles {

pairOfDoubles(const double& left, const double& right)
: left_(left), right_(right) {}

double left_;
double right_;

};

Using templates, we can use a template parameter to represent their different uses of
types and write one templated class definition. See Example 2-2. The templated class
definition is a copy of the common portions of the two preceding definitions. Because
the two definitions differ only in their use of theint anddouble types, we replace
these concrete types with a template parameterT. We precede, not follow, the class
definition with template <typename T> . The constructor’s parameters’ types
are changed toT, as are the data members’ types.

Example 2-2. Templated Class Storing Pairs of Values

// Declare a template class storing a pair of values
// with the same type.
template <typename T> // (1)

17
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struct pair {
pair(const T& left, const T& right) // (2)

: left_(left), right_(right) {}

T left_; // (3)
T right_;

};

// Use a class storing a pair of integers. (4)
pair<int> pair1;

// Use a class storing a pair of doubles;
pair<double> pair2;

(1) Template parameters are written before, not after, a class name.

(2) The constructor has two parameters of typeconst T& .

(3) An object stores two values having typeT.

(4) To use a templated class, specify the template parameter’s argument after the class’s
name and surrounded by angle brackets (<>).

To use a template class definition, template arguments follow the class name surrounded
by angle brackets (<>). For example,pair<int> instantiates the pair tem-
plate class definition withT equal toint . That is, the compiler creates a definition
for pair<int> by copyingpair ’s template definition and substitutingint for
each occurrence ofT. The copy omits the template parameter declarationtemplate
<typename T> at the beginning of its definition. The result is a definition exactly
the same aspairOfInts .

As we mentioned above, template instantiation is analogous to function application. A
template class is analogous to a function; it is a function from types and constants to
classes. The analogy between compile-time and run-time programming constructs can
be extended. Table 2-1 lists these correspondences. For example, at run time, values
consist of things such as integers, floating point numbers, pointers, functions, and ob-
jects. Programs compute by operating on these values. The compile-time values include
types, and compile-time operations use these types. For both run-time and compile-time
programming, C++ defines default sets of values that all conforming compilers must
support. For example,3 and6.022e+23 are run-time values that any C++ compiler
must accept. It must also accept theint , bool , andint* types.

18
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Table 2-1. Correspondences Between Run-Time and Compile-Time Constructs

programming
construct

run time compile time

values integers, strings, objects,
functions, . . .

types, . . .

create a value to store
multiple values

object creation class definition

values stored within a
collection

data member, member
function

nested type name, nested
class, static member
function, constant integral
values

placeholder for “any
particular value”

variable, e.g., “any int” template argument, e.g.,
“any type”

packaging repeated
operations

A function generalizes a
particular operation applied
to different values. The
function parameters are
placeholders for particular
values.

A template class
generalizes a particular
class definition using
different types. The
template parameters are
placeholders for particular
values.

application Use a function by
appending function
arguments surrounded by
parentheses.

Use a template class by
appending template
arguments surrounded by
angle brackets (<>).

The set of supported run-time and compile-time values can be extended. Run-time values
can be extended by creating new objects. Although not part of the default set of values,
these objects are treated and operated on as values. To extend the set of compile-time
values, class definitions are written. For example, Example 2-1 declares two new types
pairOfInts andpairOfDoubles . Although not part of the set of built-in types,
these types can be used in the same way that any other types can be used, e.g., declaring
variables.

Functions generalize similar run-time operations, while template class generalize similar
class definitions. A function definition generalizes a repeated run-time operation. For
example, consider repeatedly printing the largest of two numbers:

std::cout << (3 > 4 ? 3 : 4) << std::endl;
std::cout << (4 > -13 ? 4 : -13) << std::endl;

19
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std::cout << (23 > 4 ? 23 : 4) << std::endl;
std::cout << (0 > 3 ? 0 : 3) << std::endl;

Each statement is exactly the same except for the repeated two values. Thus, we can
generalize these statements writing a function:

void maxOut(int a, int b)
{ std::cout << (a > b ? a : b) << std::endl; }

The function’s body consists of the statement with variables substituted for the two par-
ticular values. Each parameter variable is a placeholder that, when used, holds one par-
ticular value among the set of possible integral values. The function must be named to
permit its use, and declarations for its two parameters follow. Using the function simpli-
fies the code:

maxOut(3, 4);
maxOut(4, -13);
maxOut(23, 4);
maxOut(0, 3);

To use a function, the function’s name precedes parentheses surrounding specific values
for its parameters, but the function’s return type is omitted.

A template class definition generalizes repeated class definitions. If two class defini-
tions differ only in a few types, template parameters can be substituted. Each param-
eter is a placeholder that, when used, holds one particular value, i.e., type, among the
set of possible values. The class definition is named to permit its use, and declarations
for its parameters precede it. The example found in the previous section illustrates this
transformation. Compare the original, untemplated classes in Example 2-1 with the tem-
plated class in Example 2-2. Note the notation for the template class parameters.tem-
plate <typename T> precedesthe class definition. The keywordtypename
indicates the template parameter is a type.T is the template parameter’s name. (We

could have used any other identifier such aspairElementType or foo .) Note
that usingclass is equivalent to usingtypename sotemplate <class T>
is equivalent totemplate <typename T> . While declaring a template class re-
quires prefix notation, using a templated class requires postfix notation. The class’s name
precedes angle brackets (<>) surrounding specific values, i.e., types, for its parameters.
As we showed above,pair<int> instantiates the template classpair with int
for its type parameterT.
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In template programming, nested type names store compile-time data that can be used
within template classes. Since compile-time class definitions are analogous to run-time
objects and the latter stores named values, nested type names are values, i.e., types,
stored within class definitions. For example, the template classArray has an nested
type name for the type of its domain:

typedef typename Engine_t::Domain_t Domain_t;

This typedef , i.e., type definition, defines the typeDomain_t as equivalent
to Engine_t::Domain_t . The :: operator selects theDomain_t nested
type from inside theEngine_t type. This illustrates how to accessArray ’s
Domain_t when not within Array ’s scope: Array<Dim, T, Engine-
Tag>::Domain_t . The analogy between object members and nested type names
alludes to its usefulness. Just as run-time object members store information for later use,
nested type names store type information for later use at compile time. Using nested
type names has no impact on the speed of executing programs.

2.3. Template Programming Used to Write
POOMA

The preceding section presented template programming tools needed to read this book
and write programs using the POOMA Toolkit. In this section, we present template pro-
gramming techniques used to implement POOMA. We extend the correspondence be-
tween compile-time template programming constructs and run-time constructs started in
the previous section. Reading this section is not necessary unless you wish to understand
how POOMA is implemented.

In the previous section, we used a correspondence between run-time and compile-time
programming constructs to introduce template programming concepts, which occur at
compile time. See Table 2-1. In implementing POOMA, more constructs are used. We
list these in Table 2-2.

Table 2-2. More Correspondences Between Run-Time and Compile-Time Con-
structs
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programming
construct

run time compile time

values integers, strings, objects,
functions, . . .

types, constant integers and
enumerations, pointers and
references to objects and
functions, executable code,
. . .

operations on values Integral values support+,
- , >, ==, . . . . String values
support[] , ==, . . . .

Types may be declared and
used. Constant integral and
enumeration values can be
combined using+, - , >,
==, . . . . There are no
permitted operations on
code.

values stored in a collection An object stores values. Atraits class contains
values describing a type.

extracting values from
collections

An object’s named values
are extracted using the
. operator.

A class’s nested types and
classes are extracted using
the:: operator.

control flow to choose
among operations

if , while , goto , . . . template class
specializations with pattern
matching

The only compile-time values described in the previous section were types, but any
compile-time constant can also be used. Integral literals,const variables, and other
constructs can be used, but the main use is enumerations. Anenumerationis a distinct
integral type with named constants. For example, theArray declaration declares two
separate enumerations:

template<int Dim, class T, class EngineTag>
class Array
{
public:

typedef Engine<Dim, T, EngineTag> Engine_t;
enum { dimensions = Engine_t::dimensions };
enum { rank = Engine_t::dimensions };

...

The first enumeration declares the constantdimensions to be equal to the value of
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thedimensions within theArray ’s Engine . The second enumeration declares
the constantrank to have the same value. Semantically, both indicate the dimension-
ality of the array’s domain. Enumeration constants have integral values so they may be
used wherever integers can be used. For example,

enum { dimensionPlusRank = dimensions + rank };

could be added to theArray declaration. Declaring an enumeration is a compile-time
construct analogous to assigning an integral value to a variable at run time. Note that an
enumerated constant’s value cannot be changed.

Enumerations are frequently used in template programming because

• an enumeration declares a new type, which ensures it is available at compile time and

• constant integral values, and thus enumerated constants, can be used in all compile-
time expressions and as template arguments.

The use of non-integral constant values such as floating-point numbers at compile time
is restricted.

Other compile-time values include pointers to objects and functions, references to
objects and functions, and executable code. For example, a pointer to a function some-
times is passed to a template function to perform a specific task. Even though executable
code cannot be directly represented in a program, it is a compile-time value which the
compiler uses. A simple example is a class that is created by template instantiation, e.g.,
pair<int> . Conceptually, theint template argument is substituted throughout the
pair template class to produce a class definition. Although neither the programmer
nor the user sees this class definition, it is represented inside the compiler, which can
use and manipulate the code.

Through template programming, the compiler’s optimizer can transform complicated
code into much simpler code. In Section 7.3, we describe the complicated template code
used to implement efficiently data-parallel operations. Although the template code is
complicated, the compiler optimization frequently greatly simplifies it to yield simple,
fast loops. We illustrate this with a simple template class:

template <bool complicatedCase>
struct usuallySimpleClass {

usuallySimpleClass() {
if (complicatedCase)

i = do_some_very_complicated_computation();
else

23



Chapter 2. Programming with Templates

i = 0;
}
int i;

};

TheusuallySimpleClass has one boolean template parametercomplicat-
edCase , which should be true only if the constructor must perform some very com-
plicated, time-expensive computation. When instantiated withfalse , the compiler
substitutes this value into the template class definition. Since theif statement’s condi-
tional is false, the compiler optimizer can eliminate the statement, yielding internal code
similar to

struct usuallySimpleClass<false> {
usuallySimpleClass() {

i = 0;
}
int i;

};

The optimizer might further simplify the code by inlining the constructor’s assignment.
Because the resulting code is never displayed, the programmer does not know how sim-
plified it is without investigating the resulting assembly code. C++ compilers that trans-
late C++ code into C code may permit inspecting the resulting code. For example, using
the--keep_gen_c command-line option with the KAI C++ compiler creates a file
containing the intermediate code. Unfortunately, reading and understanding the code is
frequently difficult.

Each category of values supports a distinct set of operations. For example, the run-time
category of integer values supports combination using+ and- and comparison using
> and==. At run time, the category of strings can be compared using== and char-
acters can be extracted using subscripts with the[] operator. Compile-time operations
are more limited. Types may be declared and used. Thesizeof operator yields the
number of bytes to represent an object of the specified type. Enumerations, constant
integers,sizeof expressions, and simple arithmetic and comparison operators such
as+ and== can form constant expressions that can be used at compile time. These
values can initialize enumerations and integer constants and be used as template argu-
ments. At compile time, pointers and references to objects and functions can be used as
template arguments, while the category of executable code supports no operations. (The
compiler’s optimizer may simplify it, though.)
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At run time, an object can store multiple values, each having its own name. For ex-
ample, apair<int> objectp stores twoint s namedleft_ andright_ . The
. operator extracts a named member from an object:p.left_ . At compile time,
a class can store multiple values, each having its own name. These are sometimes
calledtraits classes. For example, implementing data-parallel operations requiring stor-
ing a tree of types. TheExpressionTraits<BinaryNode<Op, Left,
Right>> traits class stores the types of a binary node representing the operation of
Opon left and right children. Its definition

template<class Op, class Left, class Right>
struct ExpressionTraits<BinaryNode<Op, Left, Right>>
{

typedef typename ExpressionTraits<Left>::Type_t Left_t;
typedef typename ExpressionTraits<Right>::Type_t Right_t;
typedef typename

CombineExpressionTraits<Left_t, Right_t>::Type_t Type_t;
};

consists of a class definition and internal type definitions. This traits class contains three
values, all types and namedLeft_t , Right_t , andType_t , representing the type
of the left child, the right child, and the entire node, respectively. Many traits classes,
such as this one, use internal type definitions to store values. No enumerations or con-
stant values occur in this traits class, but other such classes include them. See Section
7.3 for more details regarding the implementation of data-parallel operators.

The example also illustrates using the:: operator to extract a member
of a traits class. The typeExpressionTraits<Left> contains an
internal type definition of Type_t . Using the :: operator extracts it:
ExpressionTraits<Left>::Type_t . Enumerations and other values can
also be extracted. For example,Array<2, int, Brick>::dimensions
yields the dimension of the array’s domain.

Control flow determines which code is used. At run time, control-flow statements such
asif , while , andgoto determine which statements to execute. Template program-
ming uses two mechanisms: template class specializations and pattern matching. These
are similar to control flow in functional programming languages. Atemplate class spe-
cializationis a class definition specific to one or more template arguments. For example,
the implementation for data-parallel operations uses the templatedCreateLeaf .
The default definition works for any template argumentT:
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template<class T>
struct CreateLeaf
{

typedef Scalar<T> Leaf_t;
...

};

The code is different forExpression specializations:

template<class T>
struct CreateLeaf<Expression<T>>
{

typedef typename Expression<T>::Expression_t Leaf_t;
...

};

The latter code is only used whenCreateLeaf ’s template argument is anExpres-
sion type.

Pattern matching of template arguments to template parameters determines which tem-
plate code is used. The code associated with the match that is most specific is the one that
is used. For example,CreateLeaf<int> uses the first, more general template class
definition because theint template argument does not matchExpression<T> for
any value ofT. On the other hand,CreateLeaf<Expression<int>> uses
the second definition because both the general and the specialized template parameters
match so the more specialized ones are preferred. In this case,T equalsint . Cre-
ateLeaf<Expression<Expression<int>>> also matches the more spe-
cialized definition withT equalingExpression<int> .

Control flow using template specializations and pattern matching is similar toswitch
statements. Aswitch statement has a condition and one or more pairs of case labels
and associated code. The code associated with the the case label whose value matches
the condition is executed. If no case label matches the condition, the default code, if
present, is used. In template programming, instantiating a template, e.g.,

CreateLeaf<Expression<int>>

serves as the condition. The set of template parameters for the indicated template
class, e.g.,CreateLeaf , are analogous to the case labels, and each has an asso-
ciated definition. In our example, the set of template parameters are<class T>
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and<Expression<class T>> . The “best match”, if any, indicates the match-
ing code that will be used. In our example, the<class T> parameter serves as the
default label since it matches any arguments. If no set of template parameters match
(which is impossible for our example) or if more than one set are best matches, the code
is incorrect.

Functions as well as classes may be templated. All the concepts needed to understand
function templates have already been introduced so we illustrate using an example. The
templated functionf takes one parameter of any type:

template <typename T>
void f(const T& t) { ... }

A function templatedefines an unbounded set of related functions, all with the same
name. Our example defines functions equivalent tof(const int&) , f(const
bool&) , f(const int*&) , . . . . Using a templated class definition with a static
member function, we can define an equivalent function:

template <typename T>
class F {

static void f(const T& t) { ... }
};

Both the templated class and the templated function take the same template arguments,
but the class uses a static member function. Thus, the notation to invoke it is slightly
more verbose:F<T>::f(t) .

The advantage of a function template is that it can be overloaded, particularly operator
functions. For example, the+ operator is overloaded to add twoArray s, which require
template parameters to specify:

template <int D1,class T1,class E1,
int D2,class T2,class E2>

// complicated return type omitted
operator+(const Array<D1,T1,E1> & l,

const Array<D2,T2,E2> & r);

Without using function templates, it would not be possible to write expressions such
as a1 + a2 . Member functions can also be templated. This permits, for example,
overloading of assignment operators defined within templated classes.
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Function objects are frequently useful in run-time code. They consist of a function plus
some additional storage and are usually implemented as structures with data members
and a function call operator. Analogous classes can be used at compile time. Using the
transformation introduced in the previous paragraph, we see that any function can be
transformed into a class containing a static member function. Internal type definitions,
enumerations, and static constant values can be added to the class. The static member
function can use these values during its computation. TheCreateLeaf structure,
introduced above, illustrates this.

template<class T>
struct CreateLeaf
{

typedef Scalar<T> Leaf_t;
inline static Leaf_t make(const T& a)

{ return Scalar<T>(a); }
};

Thus,CreateLeaf<T>::make is a function with a complicated name and having
access to the class member namedLeaf_t . Unlike for function objects, the function’s
name within the class must be given a name.
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POOMA provides different containers and processor configurations and supports dif-
ferent implementation styles, as described in Section 1.1. In this chapter, we present
several different implementations of theDoof2d two-dimensional diffusion simula-
tion program:

• a C-style implementation omitting any use of POOMA and computing each array
element individually,

• a POOMAArray implementation computing each array element individually,
• a POOMAArray implementation using data-parallel statements,
• a POOMAArray implementation using stencils, which support local computations,
• a stencil-based POOMAArray implementation supporting computation on multiple

processors
• a POOMAField implementation using data-parallel statements, and
• a data-parallel POOMAField implementation for multiprocessor execution.

These illustrate theArray , Field , Engine , layout, mesh, andDomain data
types. They also illustrate various immediate computation styles (element-wise accesses,
data-parallel expressions, and stencil computation) and various processor configurations
(one processor and multiple processors).

TheDoof2d diffusion program starts with a two-dimensional grid of values. To model
an initial density, all grid values are zero except for one nonzero value in the center. Each
averaging, each grid element, except the outermost ones, updates its value by averaging
its value and its eight neighbors. To avoid overwriting grid values before all their uses
occur, we use two arrays, reading the first and writing the second and then reversing
their roles within each iteration.

We illustrate the averagings in Figure 3-1. Initially, only the center element has nonzero
value. To form the first averaging, each element’s new value equals the average of its and
its neighbors’ previous values. Thus, the initial nonzero value spreads to a three-by-three
grid. The averaging continues, spreading to a five-by-five grid of nonzero values. Values
in the outermost grid cells are always zero.
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Figure 3-1.Doof2d Averagings
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Before presenting the various implementations ofDoof2d , we explain how to install
the POOMA Toolkit.

3.1. Installing POOMA
In this section, we describe how to obtain, build, and install the POOMA Toolkit. We
focus on installing under a Unix-like operating system.

Obtain the POOMA source codepooma-2.3.0.tgz from the POOMA download page
(http://pooma.codesourcery.com/pooma/download) available off the POOMA
home page (http://www.codesourcery.com/pooma/pooma/). The “tgz” indicates
this is a compressed tar archive file. To extract the source files, usetar xzvf
pooma-2.3.0.tgz . Move into the source code directorypooma-2.3.0 directory;
e.g.,cd pooma-2.3.0 .

Configuring the source code determines file names needed for compilation. First,
determine a configuration file in theconfig/arch/ directory corresponding to
your operating system and compiler. For example,LINUXgcc.conf supports com-
piling under a Linux operating system with g++, whileSGI64KCC.conf supports
compiling under a 64-bit SGI Irix operating system with KCC. Next, configure
the source code:./configure --arch LINUXgcc --opt --suite
LINUXgcc-opt . The architecture argument to the--arch option is the name of
the corresponding configuration file, omitting its.conf suffix. The--opt indicates the
POOMA Toolkit will contain optimized source code, which makes the code run more
quickly but may impede debugging. Alternatively, use the--debug option which sup-
ports debugging. Thesuite namecan be any arbitrary string. We choseLINUXgcc-
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opt to remind us of the architecture and optimization choice.configure creates sub-
directories named “LINUXgcc-opt” for use when compiling the source files. Comments
at the beginning oflib/suiteName/PoomaConfiguration.h record the configuration
arguments.

To compile the source code, set thePOOMASUITEenvironment variable to the suite
name and then typemake. To set the environment variable for the bash shell useex-
port POOMASUITE=suiteName , substituting the suite name’ssuiteName .
For the csh shell, usesetenv POOMASUITE LINUXgcc-opt . Issuing the
make command compiles the POOMA source code files to create the POOMA library.
The POOMA makefiles assume the GNU™ Make is available so substitute the proper
command to run GNU™ Make if necessary. The POOMA library can be found in, e.g.,
lib/LINUXgcc-opt/libpooma-gcc.a.

3.2. Hand-Coded Implementation
Before implementingDoof2d using the POOMA Toolkit, we present a hand-coded
implementation ofDoof2d . See Example 3-1. After querying the user for the number
of averagings, the arrays’ memory is allocated. Since the arrays’ size is not known at
compile time, the arrays are accessed via pointers to allocated dynamic memory. This
memory is deallocated at the program’s end to avoid memory leaks. The arrays are
initialized with initial conditions. For theb array, all values except the central ones have
nonzero values. Only the outermost values of thea array need be initialized to zero, but
we instead initialize them all using the same loop initializingb.

The simulation’s kernel consists of triply nested loops. The outermost loop controls the
number of iterations. The two inner nested loops iterate through the arrays’ elements,
excepting the outermost elements; note the loop indices range from 1 to n-2 while the
array indices range from 0 to n-1. Eacha value is assigned the average of its corre-
sponding value inb and the latter’s neighbors. Values in the two-dimensional grids are
accessed using two sets of brackets, e.g.,a[i][j] . After assigning values toa, a
second averaging reads values ina, writing values inb.

After the kernel finishes, the final central value is printed. If the desired number of
averagings is even, the value inb is printed; otherwise, the value ina is used. Finally,
the dynamically-allocated memory must be freed to avoid memory leaks.

Example 3-1. Hand-Coded Implementation ofDoof2d
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#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS

// Doof2d: C-like, element-wise implementation

int main()
{

// Ask the user for the number of averagings. (1)
long nuAveragings, nuIterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

// Use two-dimensional grids of values. (2)
double **a;
double **b;

// Ask the user for the number n of values along one
// dimension of the grid. (3)
long n;
std::cout << "Please enter the array size: ";
std::cin >> n;

// Allocate the arrays. (4)
typedef double* doublePtr;
a = new doublePtr[n];
b = new doublePtr[n];
for (int i = 0; i < n; i++) {

a[i] = new double[n];
b[i] = new double[n];

}

// Set up the initial conditions.
// All grid values should be zero except for the
// central value. (5)
for (int j = 0; j < n; j++)

for (int i = 0; i < n; i++)
a[i][j] = b[i][j] = 0.0;

b[n/2][n/2] = 1000.0;
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// Average using this weight. (6)
const double weight = 1.0/9.0;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a. (7)
for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++)
a[i][j] = weight *

(b[i+1][j+1] + b[i+1][j ] + b[i+1][j-1] +
b[i ][j+1] + b[i ][j ] + b[i ][j-1] +
b[i-1][j+1] + b[i-1][j ] + b[i-1][j-1]);

// Read from a. Write to b. (8)
for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++)
b[i][j] = weight *

(a[i+1][j+1] + a[i+1][j ] + a[i+1][j-1] +
a[i ][j+1] + a[i ][j ] + a[i ][j-1] +
a[i-1][j+1] + a[i-1][j ] + a[i-1][j-1]);

}

// Print out the final central value. (9)
std::cout <<

(nuAveragings % 2 ? a[n/2][n/2] : b[n/2][n/2])
<< std::endl;

// Deallocate the arrays. (10)
for (int i = 0; i < n; i++) {

delete [] a[i];
delete [] b[i];

}
delete [] a;
delete [] b;

return EXIT_SUCCESS;
}
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(1) The user specifies the desired number of averagings.

(2) These variables point to the two-dimensional, dynamically-allocated grids so we use
a pointer to a pointer to adouble .

(3) The user enters the desired grid size. The grid will be a square withn by n grid cells.

(4) Memory for the arrays is allocated. By default, the array indices are zero-based.

(5) Initially, all grid values are zero except for the one nonzero value at the center of the
second array. Array positions are indicated using two brackets, e.g.,a[i][j] . A
better implementation might initialize only the outermost values of thea array.

(6) This constants indicates the average’s weighting.

(7) Eacha value, except an outermost one, is assigned the average of its analogousb
value and that value’s neighbors. Note the loop indices ensure the outermost values
are not changed. Theweight ’s value ensures the computation is an average.

(8) The second averaging computesb’s values using values stored ina.

(9) After the averagings finish, the central value is printed.

(10)The dynamically-allocated memory must be deallocated to avoid memory leaks.

To compile the executable, change directories to the POOMAexamples/Manual/

Doof2d directory. Ensure thePOOMASUITEenvironment variable specifies the de-
sired suite namesuiteName , as we did when compiling POOMA in Section 3.1. Is-
suing themake Doof2d-C-element command creates the executablesuite-
Name/Doof2d-C-element .

When running the executable, specify the desired nonnegative number of averagings and
the nonnegative number of grid cells along any dimension. The resulting grid has the
same number of cells along each dimension. After the executable finishes, the resulting
value of the central element is printed.

3.3. Element-wise Array Implementation
The simplest way to use the POOMA Toolkit is to use the POOMAArray class instead
of C arrays.Array s automatically handle memory allocation and deallocation, support
a wider variety of assignments, and can be used in expressions. Example 3-2 implements
Doof2d usingArray s and element-wise accesses. Since the same algorithm is used
as Example 3-1, we will concentrate on the differences.
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Example 3-2. Element-wiseArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

// has POOMA’s Array declarations (1)

// Doof2d: POOMA Arrays, element-wise implementation

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution. (2)
Pooma::initialize(argc,argv);

// Ask the user for the number of averagings.
long nuAveragings, nuIterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

// Ask the user for the number n of values along
// one dimension of the grid.
long n;
std::cout << "Please enter the array size: ";
std::cin >> n;

// Specify the arrays’ domains [0,n) x [0,n). (3)
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Create the arrays. (4)
// The Array template parameters indicate
// 2 dimensions, a ’double’ value
// type, and ordinary ’Brick’ storage.
Array<2, double, Brick> a(vertDomain);
Array<2, double, Brick> b(vertDomain);

// Set up the initial conditions.
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// All grid values should be zero except for the
// central value. (5)
for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++)
a(i,j) = b(i,j) = 0.0;

b(n/2,n/2) = 1000.0;

// In the average, weight elements with this value.
const double weight = 1.0/9.0;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a.
for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++)
a(i,j) = weight * (6)

(b(i+1,j+1) + b(i+1,j ) + b(i+1,j-1) +
b(i ,j+1) + b(i ,j ) + b(i ,j-1) +
b(i-1,j+1) + b(i-1,j ) + b(i-1,j-1));

// Read from a. Write to b.
for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++)
b(i,j) = weight *

(a(i+1,j+1) + a(i+1,j ) + a(i+1,j-1) +
a(i ,j+1) + a(i ,j ) + a(i ,j-1) +
a(i-1,j+1) + a(i-1,j ) + a(i-1,j-1));

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The arrays are automatically deallocated. (7)

// Tell the POOMA library execution finished. (8)
Pooma::finalize();
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return EXIT_SUCCESS;
}

(1) To use POOMAArray s, thePooma/Arrays.h must be included.

(2) The POOMA Toolkit structures must be constructed before their use.

(3) Before creating anArray , its domain must be specified. TheN Interval rep-
resents the one-dimensional integral set {0, 1, 2, . . . , n-1}. TheInterval<2>
vertDomain object represents the entire two-dimensional index domain.

(4) An Array ’s template parameters indicate its dimension, its value type, and how the
values will be stored or computed. TheBrick Engine type indicates values will
be directly stored. It is responsible for allocating and deallocating storage sonew
anddelete statements are not necessary. ThevertDomain specifies the array
index domain.

(5) The first loop initializes allArray values to the same scalar value. The second
statement illustrates assigning oneArray value. Indices, separated by commas,
are surrounded by parentheses rather than surrounded by square brackets ([] ).

(6) Array element access uses parentheses, rather than square brackets.

(7) TheArray s deallocate any memory they require, eliminating memory leaks.

(8) The POOMA Toolkit structures must be destructed after their use.

We describe the use ofArray and the POOMA Toolkit in Example 3-2.Array s, de-
clared in thePooma/Arrays.h, are first-class objects. They “know” their index domain,
can be used in expressions, can be assigned scalar and array values, and handle their
own memory allocation and deallocation.

The creation of thea andb Array s requires an object specifying their index domains.
Since these are two-dimensional arrays, their index domains are also two-dimensional.
The two-dimensionalInterval<2> object is the Cartesian product of two one-
dimensionalInterval<1> objects, each specifying the integral set {0, 1, 2, . . . ,
n-1}.

An Array ’s template parameters indicate its dimension, the type of its values, and how
the values are stored. Botha andb are two-dimension arrays storingdouble s so their
dimension is 2 and their value type isdouble . An Engine stores anArray ’s
values. For example, aBrick Engine explicitly stores all values. ACompress-
ibleBrick Engine also explicitly stores values if more than one value is present,
but, if all values are the same, storage for just that value is required. Since an engine can
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store its values any way it desires, it might instead compute its values using a function
or compute using values stored in separate engines. In practice, most explicitly specified
Engine s are eitherBrick or CompressibleBrick .

Array s support both element-wise access and scalar assignment. Element-wise access
uses parentheses, not square brackets. For example,b(n/2,n/2) specifies the cen-
tral element. The scalar assignmentb = 0.0 assigns the same 0.0 value to all array
elements. This is possible because the array knows the extent of its domain. We illustrate
these data-parallel statements in the next section.

Any program using the POOMA Toolkit must initialize the toolkit’s data structures
using Pooma::initialize(argc,argv) . This extracts POOMA-specific
command-line options from the program’s command-line arguments and initial-
izes the interprocessor communication and other data structures. When finished,
Pooma::finalize() ensures all computation and communication has finished
and the data structures are destructed.

3.4. Data-Parallel Array Implementation
POOMA supports data-parallelArray accesses. Many algorithms are more easily ex-
pressed using data-parallel expressions. Also, the POOMA Toolkit can sometimes re-
order the data-parallel computations to be more efficient or distribute them among var-
ious processors. In this section, we concentrate on the differences between the data-
parallel implementation ofDoof2d listed in Example 3-3 and the element-wise imple-
mentation listed in the previous section.

Example 3-3. Data-ParallelArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

// has POOMA’s Array declarations

// Doof2d: POOMA Arrays, data-parallel implementation

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);
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// Ask the user for the number of averagings.
long nuAveragings, nuIterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

// Ask the user for the number n of values along one
// dimension of the grid.
long n;
std::cout << "Please enter the array size: ";
std::cin >> n;

// Specify the arrays’ domains [0,n) x [0,n).
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Set up interior domains [1,n-1) x [1,n-1)
// for computation. (1)
Interval<1> I(1,n-2);
Interval<1> J(1,n-2);

// Create the arrays.
// The Array template parameters indicate 2 dimensions,
// a ’double’ value
// type, and ordinary ’Brick’ storage.
Array<2, double, Brick> a(vertDomain);
Array<2, double, Brick> b(vertDomain);

// Set up the initial conditions.
// All grid values should be zero except for the
// central value.
a = b = 0.0;
// Ensure all data-parallel computation finishes
// before accessing a value. (2)
Pooma::blockAndEvaluate();
b(n/2,n/2) = 1000.0;

// In the average, weight elements with this value.
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const double weight = 1.0/9.0;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a. (3)
a(I,J) = weight *

(b(I+1,J+1) + b(I+1,J ) + b(I+1,J-1) +
b(I ,J+1) + b(I ,J ) + b(I ,J-1) +
b(I-1,J+1) + b(I-1,J ) + b(I-1,J-1));

// Read from a. Write to b.
b(I,J) = weight *

(a(I+1,J+1) + a(I+1,J ) + a(I+1,J-1) +
a(I ,J+1) + a(I ,J ) + a(I ,J-1) +
a(I-1,J+1) + a(I-1,J ) + a(I-1,J-1));

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The arrays are automatically deallocated.

// Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

}

(1) These variables specify one-dimensional domains {1, 2, . . . , n-2}. Their Cartesian
product specifies the domain of the array values that are modified.

(2) POOMA may reorder computation.Pooma::blockAndEvaluate ensures
all computation finishes before accessing a particular array element.

(3) Data-parallel expressions replace nested loops and array element accesses. For ex-
ample,a(I,J) represents the subset of thea array having a domain equal to the
Cartesian product ofI andJ . Intervals can shifted by an additive or multiplicative
constant.
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Data-parallel expressions use containers and domain objects to indicate a set of parallel
expressions. For example, in the program listed above,a(I,J) specifies the subset of
a array omitting the outermost elements. The array’svertDomain domain consists
of the Cartesian product of {0, 1, 2, . . . , n-1} with itself, whileI andJ each specify
{1, 2, . . . , n-2}. Thus,a(I,J) is the subset with a domain of the Cartesian product
of {1, 2, . . . , n-2} with itself. It is called aviewof an array. It is itself anArray , with
a domain and supporting element access, but its storage is the same asa’s. Changing a
value ina(I,J) also changes the same value ina. Changing a value in the latter also
changes the former if the value is not one ofa’s outermost elements. The expression
b(I+1,J+1) indicates the subset ofb with a domain consisting of the Cartesian
product of {2, 3, . . . , n-1}, i.e., the same domain asa(I,J) but shifted up one unit
and to the right one unit. Only anInterval ’s value, not its name, is important so all
uses ofJ in this program could be replaced byI without changing the semantics.

The statement assigning toa(I,J) illustrates thatArray s may participate in expres-
sions. Each addend is a view of an array, which is itself an array. The views’ indices are
zero-based so their sum can be formed by adding identically indexed elements of each
array. For example, the lower, left element of the result equals the sum of the lower, left
elements of the addend arrays. Figure 3-2 illustrates adding two arrays.

Figure 3-2. Adding Array s

When adding arrays, values with the same indices, indicated by the small numbers adja-
cent to the arrays, are added.

POOMA may reorder computation or distribute them among various processors so, be-
fore accessing individual values, the code callsPooma::blockAndEvaluate .
Before reading an individualArray value, calling this function ensures all computa-
tions affecting its value have finished, i.e., it has the correct value. Calling this function
is necessary only when accessing individual array elements. For example, before the
data-parallel operation of printing an array, POOMA will callblockAndEvalu-
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ate itself.

3.5. Stencil Array Implementation
Many scientific computations are localized, computing an array’s value by using neigh-
boring values. Encapsulating this local computation in astencilcan yield faster code
because the compiler can determine that all array accesses use the same array. Each
stencil consists of a function object and an indication of which neighbors participate in
the function’s computation.

Example 3-4. StencilArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

// has POOMA’s Array declarations

// Doof2d: POOMA Arrays, stencil implementation

// Define a stencil class performing computation. (1)
class DoofNinePt
{
public:

// Initialize the constant average weighting.
DoofNinePt() : weight(1.0/9.0) {}

// This stencil operator is applied to each
// interior domain position (i,j). The "C"
// template parameter permits use of this
// stencil operator with both Arrays & Fields. (2)
template <class C>
inline
typename C::Element_t
operator()(const C& c, int i, int j) const {

return
weight *
(c.read(i+1,j+1)+c.read(i+1,j)+c.read(i+1,j-1)+

43



Chapter 3. A Tutorial Introduction

c.read(i ,j+1)+c.read(i ,j)+c.read(i ,j-1)+
c.read(i-1,j+1)+c.read(i-1,j)+c.read(i-1,j-1));

}

inline int lowerExtent(int) const { return 1; } (3)
inline int upperExtent(int) const { return 1; }

private:

// In the average, weight elements with this value.
const double weight;

};

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

// Ask the user for the number of averagings.
long nuAveragings, nuIterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

// Ask the user for the number n of values along one
// dimension of the grid.
long n;
std::cout << "Please enter the array size: ";
std::cin >> n;

// Specify the arrays’ domains [0,n) x [0,n).
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Set up interior domains [1,n-1) x [1,n-1) for
// computation.
Interval<1> I(1,n-2);
Interval<2> interiorDomain(I,I);
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// Create the arrays.
// The Array template parameters indicate
// 2 dimensions, a ’double’ value
// type, and ordinary ’Brick’ storage.
Array<2, double, Brick> a(vertDomain);
Array<2, double, Brick> b(vertDomain);

// Set up the initial conditions.
// All grid values should be zero except for the
// central value.
a = b = 0.0;
// Ensure all data-parallel computation finishes
// before accessing a value.
Pooma::blockAndEvaluate();
b(n/2,n/2) = 1000.0;

// Create a stencil performing the computation. (4)
Stencil<DoofNinePt> stencil;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a. (5)
a(interiorDomain) = stencil(b, interiorDomain);

// Read from a. Write to b.
b(interiorDomain) = stencil(a, interiorDomain);

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The arrays are automatically deallocated.

// Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;
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}

(1) A stencil is a function object implementing a local operation on anArray .

(2) POOMA applies this function calloperator() to the interior domain of anAr-
ray . Although not strictly necessary, the function’s template parameterC permits
using this stencil withArray s and other containers. Theread Array member
function supports only reading values, not writing values, thus possibly permitting
faster access.

(3) These two functions indicate the stencil’s size. For each dimension, the stencil ex-
tends one cell to the left of (or below) its center and also one cell to the right (or
above) its center.

(4) Create the stencil.

(5) Applying stencil to theb array and a subsetinteriorDomain of its do-
main yields an array, which is assigned to a subset ofa. The stencil’s function object
is applied to each position in the specified subset ofb.

Before we describe how to create a stencil, we describe how to apply a stencil to an array,
yielding computed values. To compute the value associated with index position (1,3), the
stencil’s center is placed at (1,3). The stencil’supperExtent andlowerExtent
functions indicate whichArray values the stencil’s function will use. See Figure 3-
3. Applying the stencil’s function calloperator() yields the computed value. To
compute multipleArray values, apply a stencil to the array and a domain object:
stencil(b, interiorDomain) . This applies the stencil to each position in
the domain. The user must ensure that applying the stencil does not access nonexistent
Array values.
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Figure 3-3. Applying a Stencil to anArray

To compute the value associated with index position (1,3) of an array, place the stencil’s
center, indicated with dashed lines, at the position (1,3). The computation involves the
array values covered by the array and delineated byupperExtent andlowerEx-
tent .

To create a stencil object, apply theStencil type to a function object class. For
example,Stencil<DoofNinePt> stencil declares thestencil object.
The function object class must define a function calloperator() with a container
parameter and index parameters. The number of index parameters, indicating the sten-
cil’s center, must equal the container’s dimension. For example,DoofNinePt defines
operator()(const C& c, int i, int j) . We templated the container
typeCalthough this is not strictly necessary. The two index parametersi andj ensure
the stencil works with two-dimensional containers. ThelowerExtent function in-
dicates how far to the left (or below) the stencil extends beyond its center. Its parameter
indicates a particular dimension. Index parametersi and j are in dimension 0 and 1.
upperExtent serves an analogous purpose. The POOMA Toolkit uses these func-
tions when distributing computation among various processors, but it does not use these
functions to ensure nonexistentArray values are not accessed. Caveat stencil user!

3.6. Distributed Array Implementation
A POOMA program can execute on one or multiple processors. To convert a program
designed for uniprocessor execution to a program designed for multiprocessor execution,
the programmer need only specify how each container’s domain should be split into
“patches”. The POOMA Toolkit automatically distributes the data among the available
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processors and handles any required communication among processors. Example 3-5
illustrates how to write a distributed version of the stencil program (Example 3-4).

Example 3-5. Distributed StencilArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

// has POOMA’s Array declarations

// Doof2d: POOMA Arrays, stencil, multiple
// processor implementation

// Define the stencil class performing the computation.
class DoofNinePt
{
public:

// Initialize the constant average weighting.
DoofNinePt() : weight(1.0/9.0) {}

// This stencil operator is applied to each interior
// domain position (i,j). The "C" template
// parameter permits use of this stencil
// operator with both Arrays and Fields.
template <class C>
inline
typename C::Element_t
operator()(const C& x, int i, int j) const {

return
weight *
(x.read(i+1,j+1)+x.read(i+1,j)+x.read(i+1,j-1) +

x.read(i ,j+1)+x.read(i ,j)+x.read(i ,j-1) +
x.read(i-1,j+1)+x.read(i-1,j)+x.read(i-1,j-1));

}

inline int lowerExtent(int) const { return 1; }
inline int upperExtent(int) const { return 1; }

private:
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// In the average, weight elements with this value.
const double weight;

};

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

// Since multiple copies of this program may simul-
// taneously run, we cannot use standard input and
// output. Instead we use command-line arguments,
// which are replicated, for input, and we use an
// Inform stream for output. (1)
Inform output;

// Read the program input from the command-line
// arguments.
if (argc != 4) {

// Incorrect number of command-line arguments.
output <<

argv[0] <<
": number-of-processors number-of-averagings"
<< " number-of-values"
<< std::endl;

return EXIT_FAILURE;
}
char *tail;

// Determine the number of processors.
long nuProcessors;
nuProcessors = strtol(argv[1], &tail, 0);

// Determine the number of averagings.
long nuAveragings, nuIterations;
nuAveragings = strtol(argv[2], &tail, 0);
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

49



Chapter 3. A Tutorial Introduction

// Ask the user for the number n of values along
// one dimension of the grid.
long n;
n = strtol(argv[3], &tail, 0);
// The dimension must be a multiple of the number
// of processors since we are using a
// UniformGridLayout.
n=((n+nuProcessors-1)/nuProcessors)*nuProcessors;

// Specify the arrays’ domains [0,n) x [0,n).
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Set up interior domains [1,n-1) x [1,n-1)
// for computation.
Interval<1> I(1,n-2);
Interval<2> interiorDomain(I,I);

// Create the distributed arrays.

// Partition the arrays’ domains uniformly, i.e.,
// each patch has the same size. The first para-
// meter tells how many patches for each dimension.
// Guard layers optimize communication between
// patches. Internal guards surround each patch.
// External guards surround the entire array
// domain. (2)
UniformGridPartition<2>

partition(Loc<2>(nuProcessors, nuProcessors),
GuardLayers<2>(1), // internal
GuardLayers<2>(0)); // external

UniformGridLayout<2> layout(vertDomain, partition,
DistributedTag());

// The Array template parameters indicate 2 dims
// and a ’double’ value type. MultiPatch indicates
// multiple computation patches, i.e, distributed
// computation. The UniformTag indicates the
// patches should have the same size. Each patch
// has Brick type. (3)
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Array<2, double, MultiPatch<UniformTag,
Remote<Brick> > > a(layout);

Array<2, double, MultiPatch<UniformTag,
Remote<Brick> > > b(layout);

// Set up the initial conditions.
// All grid values should be zero except for the
// central value.
a = b = 0.0;
// Ensure all data-parallel computation finishes
// before accessing a value.
Pooma::blockAndEvaluate();
b(n/2,n/2) = 1000.0;

// Create the stencil performing the computation.
Stencil<DoofNinePt> stencil;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a. (4)
a(interiorDomain) = stencil(b, interiorDomain);

// Read from a. Write to b.
b(interiorDomain) = stencil(a, interiorDomain);

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
output <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The arrays are automatically deallocated.

// Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

}
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(1) Multiple copies of a distributed program may simultaneously run, perhaps each hav-
ing its own input and output. Thus, we use command-line arguments to pass input to
the program. Using anInform object ensures only one copy produces output.

(2) The UniformGridPartition declaration specifies how an array’s domain
will be partitioned, or split, into patches. Guard layers are an optimization that can
reduce data communication between patches. TheUniformGridLayout dec-
laration applies the partition to the given domain, distributing the resulting patches
among various processors.

(3) The MultiPatch Engine distributes requests forArray values to the as-
sociated patches. Since a patch may associated with a different processor, its “re-
mote” Engine has typeRemote<Brick> . POOMA automatically distributes
the patches among available memories and processors.

(4) The stencil computation, whether for one processor or multiple processors, is the
same.

Supporting distributed computation requires only minor code changes. These changes
specify how each container’s domain is distributed among the available processors and
how input and output occurs. The rest of the program, including all the computations,
remains the same. When running, the POOMA executable interacts with the run-time
library to determine which processors are available, distributes the containers’ domains,
and automatically handles all necessary interprocessor communication. The same exe-
cutable runs on one or many processors. Thus, the programmer can write one program,
debugging it on a uniprocessor computer and run it on a supercomputer.

POOMA’s distributed computing model separates container domain concepts from com-
puter configuration concepts. See Figure 3-4. The statements in the program indicate
how each container’s domain will be partitioned. This process is represented in the up-
per left corner of the figure. A user-specifiedpartition specifies how to split the domain
into pieces. For example, the illustrated partition splits the domain into three equal-sized
pieces along the x-dimension and two equal-sized pieces along the y-dimension. Apply-
ing the partition to the domain createspatches. The partition also specifies external and
internal guard layers. Aguard layeris a domain surrounding a patch. A patch’s com-
putation only reads but does not write these guarded values. Anexternal guard layer
conceptually surrounds the entire container domain with boundary values whose pres-
ence permits all domain computations to be performed the same way even for computed
values along the domain’s edge. Aninternal guard layerduplicates values from adja-
cent patches so communication need not occur during a patch’s computation. The use
of guard layers is an optimization; using external guard layers eases programming and
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using internal guard layers reduces communication among processors. Their use is not
required.
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Figure 3-4. The POOMA Distributed Computation Model

The POOMA distributed computation model creates a layout by combining a partition-
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ing of the containers’ domains and the computer configuration.

The computer configuration of shared memory and processors is determined by the run-
time system. See the upper right portion of Figure 3-4. Acontextis a collection of shared
memory and processors that can execute a program or a portion of a program. For exam-
ple, a two-processor desktop computer might have memory accessible to both processors
so it is a context. A supercomputer consisting of desktop computers networked together
might have as many contexts as computers. The run-time system, e.g., the Message
Passing Interface (MPI) Communications Library or the MM Shared Memory Library
(http://www.engelschall.com/sw/mm/), communicates the available contexts to the
executable. POOMA must be configured for the particular run-time system in use. See
Section A.1.

A layout combines patches with contexts so the program can be executed. IfDis-
tributedTag is specified, the patches are distributed among the available contexts.
If ReplicatedTag is specified, each set of patches is replicated on each context.
Regardless, the containers’ domains are now distributed among the contexts so the pro-
gram can run. When a patch needs data from another patch, the POOMA Toolkit sends
messages to the desired patch uses the message-passing library. All such communication
is automatically performed by the toolkit with no need for programmer or user input.

Incorporating POOMA’s distributed computation model into a program requires writ-
ing very few lines of code. Example 3-5 illustrates this. Thepartition declara-
tion creates aUniformGridPartition splitting each dimension of a container’s
domain into equally-sizednuProcessors pieces. The firstGuardLayers ar-
gument specifies each patch will have copy of adjacent patches’ outermost values. This
may speed computation because a patch need not synchronize its computation with other
patches’ processors. Since each value’s computation requires knowing its surrounding
neighbors, this internal guard layer is one layer deep. The secondGuardLayers
argument specifies no external guard layer. External guard layers simplify computing
values along the edges of domains. Since our program already uses only the interior
domain for computation, we do not use this feature.

The layout declaration creates aUniformGridLayout layout. As Example 3-
5 illustrates, it needs to know a container’s domain, a partition, the computer’s contexts,
and aDistributedTag orReplicatedTag . These compriselayout ’s three
parameters; the contexts are implicitly supplied by the run-time system.

To create a distributedArray , it should be created using aLayout object and have a
MultiPatch Engine rather than using aDomain object and aBrick Engine
as we did for the uniprocessor implementations. A distributed implementation uses a
Layout object, which conceptually specifies aDomain object and its distribution
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throughout the computer. AMultiPatch Engine supports computations using
multiple patches. TheUniformTag indicates the patches all have the same size. Since
patches may reside on different contexts, the second template parameter isRemote . Its
Brick template parameter specifies theEngine for a particular patch on a particular
context. Most distributed programs use

MultiPatch<UniformTag, Remote<Brick>>

or

MultiPatch<UniformTag, Remote<CompressibleBrick>>

or Engine s.

The computations for a distributed implementation are exactly the same as for a sequen-
tial implementation. The POOMA Toolkit and a message-passing library automatically
perform all the computation.

Input and output for distributed programs is different than for sequential programs. Al-
though the same instructions run on each context, each context may have its own input
and output streams. To avoid dealing with multiple input streams, we pass the input
via command-line arguments, which are replicated for each context. UsingInform
streams avoids having multiple output streams print. Any context can print to anIn-
form stream but only text sent to context 0 is displayed. At the beginning of the pro-
gram, we create anInform object namedoutput . Throughout the rest of the pro-
gram, we use it instead ofstd::cout andstd::cerr .

The command to run the program is dependent on the run-time system. To use
MPI with the Irix 6.5 operating system, one can use thempirun command. For
example,mpirun -np 4 Doof2d-Array-distributed -mpi 2 10
1000 invokes the MPI run-time system with four processors. The-mpi option tells
the POOMA executableDoof2d-Array-distributed to use the MPI Li-
brary. The remaining arguments specify the number of processors, the number of av-
eragings, and the array size. The first and last values are the same for each dimen-
sion. For example, if three processors are specified, then the x-dimension will have
three processors and the y-dimension will have three processors, totaling nine pro-
cessors. The commandDoof2d-Array-distributed -shmem -np 4 2
10 1000 uses the MM Shared Memory Library (-shmem) and four processors. As
for MPI, the remaining command-line arguments are specified on a per-dimension basis
for the two-dimensional program.
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3.7. Data-Parallel Field Implementation
POOMA Array s support many scientific computations, but other scientific computa-
tions require values distributed throughout space, andArray s have no spatial extent.
POOMA Field s, supporting a superset ofArray functionality, model values dis-
tributed throughout space.

A Field consists of a set of cells distributed through space. Like anArray cell, each
Field cell is addressed via indices. Unlike anArray cell, eachField cell can hold
multiple values. LikeArray s,Field s can be accessed via data-parallel expressions
and stencils and may be distributed across processors. UnlikeArray cells, Field
cells exist in a multidimensional volume so, e.g., distances between cells and normals to
cells can be computed.

In this section, we implement theDoof2d two-dimensional diffusion simulation pro-
gram usingField s. This simulation does not require anyField -specific features,
but we present this program rather than one usingField -specific features to facilitate
comparison with theArray versions, especially Example 3-3.

Example 3-6. Data-ParallelField Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Fields.h"

// has POOMA’s Field declarations (1)

// Doof2d: POOMA Fields, data-parallel implementation

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

// Ask the user for the number of averagings.
long nuAveragings, nuIterations;
std::cout<<"Please enter the number of averagings: ";
std::cin >> nuAveragings;
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.
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// Ask the user for the number n of values along
// one dimension of the grid.
long n;
std::cout << "Please enter the field size: ";
std::cin >> n;

// Specify the fields’ domains [0,n) x [0,n).
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Set up interior domains [1,n-1) x [1,n-1) for
// computation.
Interval<1> I(1,n-2);
Interval<1> J(1,n-2);

// Specify the fields’ mesh, i.e., its spatial
// extent, and its centering type. (2)
DomainLayout<2> layout(vertDomain);
UniformRectilinearMesh<2>

mesh(layout, Vector<2>(0.0), Vector<2>(1.0, 1.0));
Centering<2> cell =

canonicalCentering<2>(CellType, Continuous, AllDim);

// Create the fields.
// The Field template parameters indicate a mesh, a
// ’double’ value type, and ordinary ’Brick’
// storage. (3)
Field<UniformRectilinearMesh<2>, double, Brick>

a(cell, layout, mesh);
Field<UniformRectilinearMesh<2>, double, Brick>

b(cell, layout, mesh);

// Set up the initial conditions.
// All grid values should be zero except for the
// central value.
a = b = 0.0;
// Ensure all data-parallel computation finishes
// before accessing a value.
Pooma::blockAndEvaluate();
b(n/2,n/2) = 1000.0;
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// In the average, weight elements with this value.
const double weight = 1.0/9.0;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a. (4)
a(I,J) = weight *

(b(I+1,J+1) + b(I+1,J ) + b(I+1,J-1) +
b(I ,J+1) + b(I ,J ) + b(I ,J-1) +
b(I-1,J+1) + b(I-1,J ) + b(I-1,J-1));

// Read from a. Write to b.
b(I,J) = weight *

(a(I+1,J+1) + a(I+1,J ) + a(I+1,J-1) +
a(I ,J+1) + a(I ,J ) + a(I ,J-1) +
a(I-1,J+1) + a(I-1,J ) + a(I-1,J-1));

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The fields are automatically deallocated.

// Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

}

(1) To useField s, thePooma/Fields.h must be included.

(2) These statements specify the spacing and number ofField values. First, a layout
is specified. Then, a mesh, which specifies the spacing between cells, is created. The
Field ’s centering specifies one cell-centered value per cell.

(3) Field ’s first template parameter specifies the type of mesh to use. The other tem-
plate parameters are similar toArray ’s. The constructor arguments specify the
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Field ’s centering, its domain of cells, and a mesh specifying the cells’ spatial
arrangement.

(4) The computation forField s is the same as forArray s because this example does
not use anyField -specific features.

As mentioned above, the fundamental difference betweenArray s andField s is the
latter has cells and meshes. TheField declarations reflect this. To declare aField ,
the Pooma/Fields.h header file must be included. AField ’s domain consists of a
set of cells, sometimes called positions when referring toArray s. As forArray s, a
Field ’s domain and its layout must be specified. Since the above program is designed
for uniprocessor computation, specifying the domain specifies the layout. AField ’s
meshspecifies its spatial extent. For example, one can ask the mesh for the distance
between two cells or for the normals to a particular cell. Cells in aUniformRec-
tilinearMesh all have the same size and are parallelepipeds. To create the mesh,
one specifies the layout, the location of the spatial point corresponding to the lower, left
domain location, and the size of a particular cell. Since this program does not use mesh
computations, our choices do not matter. We specify the domain’s lower, left corner as
spatial location (0.0, 0.0) and each cell’s width and height as 1. Thus, the middle of the
cell at domain position (3,4) is (3.5, 4.5).

A Field cell can contain one or more values although each cell must have the same
arrangement of values. For this simulation, we desire one value per cell so we place
that position at the cell’s center, i.e., a cell centering. ThecanonicalCentering
function returns such a centering. .

A Field declaration is analogous to anArray declaration but must also specify
a centering and a mesh. In Example 3-3, theArray declaration specifies the array’s
dimensionality, the value type, theEngine type, and a layout.Field declarations
specify the same values. Its first template parameter specifies the mesh’s type, which
includes an indication of its dimensionality. The second and third template parameters
specify the value type and theEngine type. Since aField has a centering and a
mesh in addition to a layout, those arguments are also necessary.

Field operations are a superset ofArray operations so theDoof2d compu-
tations are the same as in Example 3-3.Field accesses require parentheses, not
square brackets, and accesses to individual values should be preceded by calls to
Pooma::blockAndEvaluate .

To summarize,Field s support multiple values per cell and have spatial extent. Thus,
their declarations must specify a centering and a mesh. Otherwise, aField program
is similar to one usingArray s.
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3.8. Distributed Field Implementation
A POOMA program usingField s can execute on one or more processors. In Sec-
tion 3.6, we demonstrated how to modify a uniprocessor stencilArray implementa-
tion to run on multiple processors. In this section, we demonstrate that the uniprocessor
data-parallelField implementation of the previous section can be similarly converted.
Only the container declarations change; the computations do not. Since the changes are
exactly analogous to those in Section 3.6, our exposition here will be shorter.

Example 3-7. Distributed Data-ParallelField Implementation of Doof2d

#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Fields.h"

// has POOMA’s Field declarations

// Doof2d: POOMA Fields, data-parallel, multiple
// processor implementation

int main(int argc, char *argv[])
{

// Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

// Since multiple copies of this program may
// simultaneously run, we canot use standard input
// and output. Instead we use command-line
// arguments, which are replicated, for input, and we
// use an Inform stream for output. (1)
Inform output;

// Read the program input from the command-line arguments.
if (argc != 4) {

// Incorrect number of command-line arguments.
output << argv[0] <<

": number-of-processors number-of-averagings"
<< " number-of-values"
<< std::endl;

return EXIT_FAILURE;
}
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char *tail;

// Determine the number of processors.
long nuProcessors;
nuProcessors = strtol(argv[1], &tail, 0);

// Determine the number of averagings.
long nuAveragings, nuIterations;
nuAveragings = strtol(argv[2], &tail, 0);
nuIterations = (nuAveragings+1)/2;

// Each iteration performs two averagings.

// Ask the user for the number n of values along
// one dimension of the grid.
long n;
n = strtol(argv[3], &tail, 0);
// The dimension must be a multiple of the number of
// processors since we are using a UniformGridLayout.
n = ((n+nuProcessors-1) / nuProcessors) * nuProcessors;

// Specify the fields’ domains [0,n) x [0,n).
Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);

// Set up interior domains [1,n-1) x [1,n-1) for
// computation.
Interval<1> I(1,n-2);
Interval<1> J(1,n-2);

// Partition the fields’ domains uniformly, i.e.,
// each patch has the same size. The first parameter
// tells how many patches for each dimension. Guard
// layers optimize communication between patches.
// Internal guards surround each patch. External
// guards surround the entire field domain. (2)
UniformGridPartition<2>

partition(Loc<2>(nuProcessors, nuProcessors),
GuardLayers<2>(1), // internal
GuardLayers<2>(0)); // external

UniformGridLayout<2>
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layout(vertDomain, partition, DistributedTag());

// Specify the fields’ mesh, i.e., its spatial
// extent, and its centering type. (3)
UniformRectilinearMesh<2>

mesh(layout, Vector<2>(0.0), Vector<2>(1.0, 1.0));
Centering<2> cell =

canonicalCentering<2>(CellType, Continuous, AllDim);

// The Field template parameters indicate a mesh and
// a ’double’ value type. MultiPatch indicates
// multiple computation patches, i.e., distributed
// computation. The UniformTag indicates the patches
// should have the same size. Each patch has Brick
// type. (4)
Field<UniformRectilinearMesh<2>, double,

MultiPatch<UniformTag, Remote<Brick>>>
a(cell, layout, mesh);

Field<UniformRectilinearMesh<2>, double,
MultiPatch<UniformTag, Remote<Brick>>>
b(cell, layout, mesh);

// Set up the initial conditions.
// All grid values should be zero except for the
// central value.
a = b = 0.0;
// Ensure all data-parallel computation finishes
// before accessing a value.
Pooma::blockAndEvaluate();
b(n/2,n/2) = 1000.0;

// In the average, weight elements with this value.
const double weight = 1.0/9.0;

// Perform the simulation.
for (int k = 0; k < nuIterations; ++k) {

// Read from b. Write to a.
a(I,J) = weight *

(b(I+1,J+1) + b(I+1,J ) + b(I+1,J-1) +
b(I ,J+1) + b(I ,J ) + b(I ,J-1) +
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b(I-1,J+1) + b(I-1,J ) + b(I-1,J-1));

// Read from a. Write to b.
b(I,J) = weight *

(a(I+1,J+1) + a(I+1,J ) + a(I+1,J-1) +
a(I ,J+1) + a(I ,J ) + a(I ,J-1) +
a(I-1,J+1) + a(I-1,J ) + a(I-1,J-1));

}

// Print out the final central value.
Pooma::blockAndEvaluate();

// Ensure all computation has finished.
output <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))
<< std::endl;

// The fields are automatically deallocated.

// Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

}

(1) Multiple copies of a distributed program may simultaneously run, perhaps each hav-
ing its own input and output. Thus, we use command-line arguments to pass input to
the program. Using anInform stream ensures only one copy produces output.

(2) The UniformGridPartition declaration specifies how an array’s domain
will be partitioned, or split, into patches. Guard layers are an optimization that can
reduce data communication between patches. TheUniformGridLayout dec-
laration applies the partition to the given domain, distributing the resulting patches
among various processors.

(3) The mesh and centering declarations are the same for uniprocessor and multiproces-
sor implementations.

(4) TheMultiPatch Engine distributes requests forField values to the asso-
ciated patch. Since a patch may associated with a different processor, its “remote”
engine has typeRemote<Brick> . POOMA automatically distributes the patches
among available memories and processors.
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This program can be viewed as the combination of Example 3-6 and the changes to
form the distributed stencil-basedArray program from the uniprocessor stencil-based
Array program.

• Distributed programs may have multiple processes, each with its own input and out-
put streams. To pass input to these processes, this programs uses command-line argu-
ments, which are replicated for each process. AnInform stream accepts data from
any context but prints only data from context 0.

• A layout for a distributed program specifies a domain, a partition, and a context map-
per. ADistributedTag context mapper tag indicates that pieces of the domain
should be distributed among patches, while aReplicatedTag context mapper
tag indicates the entire domain should be replicated to each patch.

• A MultiPatch Engine supports the use of multiple patches, while aremote
engine supports computation distributed among various contexts. Both are usually
necessary for distributed computation.

• The computation for uniprocessor or distributed implementations remains the same.
The POOMA Toolkit automatically handles all communication necessary to ensure
up-to-date values are available when needed.

• The command to invoke a distributed program is system-dependent. For ex-
ample, thempirun -np 4 Doof2d-Field-distributed -mpi 2
10 1000 command might use MPI communication.

Doof2d-Field-distributed -shmem -np 4 2 10 1000

might use the MM Shared Memory Library.
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Concepts

In the previous chapter, we presented several different implementations of theDoof2d
simulation program. The implementations illustrate the various containers, computa-
tion modes, and computation environments that POOMA supports. In this chapter, we
describe the concepts associated with each of these three categories. Specific details
needed for their use are deferred to later chapters.

The most important POOMA concepts can be grouped into three separate categories:

containers

data structures holding one or more values and usually accessed using indices

computation modes

styles of expressing computations and accesses to container values

computation environment

description of resources for computing, e.g., single processor or multiprocessor.

Table 4-1 categorizes the POOMA concepts. Many POOMA programs select one pos-
sibility from each category. For example, Example 3-4 usedArray containers and
stencils for sequential computation, while Example 3-7 usedField containers and
data-parallel statements with distributed computation. A program may use multiple con-
tainers and various computation modes, but the computation environment is either dis-
tributed or not.

Table 4-1. POOMA Concepts

Computation
Container Computation Modes Environment

Array element-wise sequential

DynamicArray data-parallel distributed

Field stencil-based

Tensor relational

TinyMatrix
Vector
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In the rest of this chapter, we explore these three categories. First, we describe POOMA
containers, illustrating the purposes of each, and explaining the concepts needed to de-
clare them. Then, we describe the different computation modes and distributed compu-
tation concepts.

4.1. POOMA Containers
Most POOMA programs usecontainersto store groups of values. POOMA containers
are objects that store other objects such as numbers or vectors. They control allocation
and deallocation of these stored objects and access to them. They are a generalization
of C arrays, but POOMA containers are first-class objects so they can be used directly
in expressions. They are also similar to C++ containers such asvector , list , and
stack . See Table 4-2 for a summary of the containers.

This section describes many concepts, but one need not understand them all to begin
programming with the POOMA Toolkit. First, we introduce the different POOMA’s
containers and describe how to choose an appropriate one for a particular task. Figure
4-1 indicates which concepts must be understood when declaring a particular container.
All of these concepts are described in Section 4.1.2 and Section 4.1.3. Use this figure
to decide which concepts in the former are relevant. Reading the latter section is neces-
sary only if computing using multiple processors. The programs in the previous chapter
illustrate many of these concepts.

Table 4-2 briefly describes the six POOMA containers. They are more fully described in
the paragraphs below.

Table 4-2. POOMA Container Summary

Array container mappingindicesto values and
that may be used in expressions

DynamicArray one-dimensionalArray whosedomain
can be dynamically resized

Field container mappingindicesto one or more
values and residing in multidimensional
space

Tensor multidimensional mathematical tensor

TinyMatrix two-dimensional mathematical matrix

Vector multidimensional mathematical vector

A POOMA Array generalizes a C array and mapsindicesto values. Given an index
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or position in anArray ’s domain, it returns the associated value, either by returning
a stored value or by computing it. The use of indices, which are usually ordered tu-
ples, permits constant-time access although computing a particular value may require
significant time. In addition to the functionality provided by C arrays, theArray class
automatically handles memory allocation and deallocation, supports a wider variety of
assignments, and can be used in expressions. For example, the addition of two arrays can
be assigned to an array and the product of a scalar element and an array is permissible.

A POOMA DynamicArray extendsArray capabilities to support a dynamically-
changing domain but is restricted to only one dimension. When theDynamicArray
is resized, its values are preserved.

A POOMA Field is anArray with spatial extent. Each domain consists ofcells in
one-, two-, or three-dimensional space. Although indexed similarly toArray s, each
cell may contain multiple values and multiple materials. AField ’s meshstores its
spatial characteristics and can yield, e.g., the cell at a particular point, the distance be-
tween two cells, or a cell’s normals. AField should be used whenever geometric or
spatial computations are needed, multiple values per index are desired, or a computation
involves more than one material.

A Tensor implements a multidimensional mathematical tensor. Since it is a first-class
type, it can be used in expressions such as adding twoTensor s.

A TinyMatrix implements a two-dimensional mathematical matrix. Since it is a
first-class type, it can be used in expressions such as assignments to matrices and multi-
plying matrices.

A Vector implements a multidimensional mathematical vector, which is an ordered
tuple of components. Since it is a first-class type, it can be used in expressions such as
adding twoVector s and multiplying aTinyMatrix and aVector .

The data of anArray , DynamicArray , or Field can be accessed using more
than one container by taking a view. Aview of an existing container C is a container
whose domain is a subset of C’s domain. The subset can equal the original domain.
A view acts like a reference in that changing any of the view’s values also changes
the original container’s and vice versa. While users sometimes explicitly create views,
they are perhaps more frequently created as temporaries in expressions. For example, if
A is anArray and I is a domain,A(I) - A(I-1) uses two views to form the
difference between adjacent values.

4.1.1. Choosing a Container
The two most commonly used POOMA containers areArray s andField s, while
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Vector , TinyMatrix , andTensor represent mathematical objects. Table 4-3
contains a decision tree describing how to choose an appropriate container.

Table 4-3. Choosing a POOMA Container

If modeling mathematical entries, use aVector , TinyMatrix , or
Tensor .

If indices and values reside in
multidimensional spaceRd,

use aField .

If there are multiple values per index, use aField .

If there are multiple materials
participating in the same computation,

use aField .

If the domain’s size dynamically changes
and is one-dimensional,

use aDynamicArray .

Otherwise use anArray .

4.1.2. Declaring Sequential Containers
In the previous sections, we introduced the POOMA containers and described how to
choose one appropriate for a given task. In this section, we describe the concepts in-
volved in declaring them. Concepts specific to distributed computation are described in
the next section.

Figure 4-1 illustrates the containers and the concepts involved in their declarations. The
containers are listed in the top row. Lines connect these containers to the components
necessary for their declarations. For example, anArray declaration requires an engine
and a layout. These, in turn, can depend on other POOMA concepts. Declarations nec-
essary only for distributed, or multiprocessor, computation are also indicated. Given a
desired container, one can use this figure to determine the concepts needed to declare a
particular container.
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Figure 4-1. Concepts For Declaring Containers

An enginestores and, if necessary, computes a container’s values. A container has one
or more engines. The separation of a container from its storage permits optimizing a
program’s space and time requirements. For example, a container returning the same
value for all indices can use a constant engine, which need only store one value for the
entire domain. ACompressibleBrick Engine reduces its space requirements
to a constant whenever all its values are the same. The separation between a container
and its engine also permits taking views of containers without copying storage.

Figure 4-2.Array and Field Mathematical and Computational Concepts

A layoutmaps domainindicesto the processors and computer memory used by a con-
tainer’s engines. See Figure 4-2. A program computes a container’s values using these
processors and memory. The layout specifies the processors and memory to use for each
particular index. A container’s layout for a uniprocessor implementation consists of its
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domain, the processor, and its memory. For a multiprocessor implementation, the layout
maps portions of the domain to (possibly different) processors and memory.

A domainis a set of points on which a container can define values. There are several
different types of domains. Aninterval consists of all integral points between two end-
points. It is frequently represented using mathematical interval notation [a,b]; it contains
only the integral points, e.g., a, a+1, a+2, . . . , b. The concept is generalized to multiple
dimensions by forming direct products of intervals, i.e., all the integral tuples in an n-
dimensional space. For example, the two-dimensional containers in the previous chapter
are defined on a two-dimensional domain with the both dimensions’ spanning the in-
terval [0,n). A domain need not contain all integral points between its endpoints. A
stride indicates a regular spacing between points. Arange is a subset of an interval of
regularly-spaced points specified by a stride.

A Field ’s meshmaps domain indices to spatial values inRd such as distances between
cells, edge lengths, and normals to cells. In other words, it provides aField ’s spatial
extent. See also Figure 4-2. Different mesh types may support different spatial values.

A mesh’scorner positionspecifies the point inRd corresponding to the cell in the lower,
left corner of its domain. Combining this, the domain, and the cell size can specify the
mesh’s map from indices toRd.

A mesh’scell sizespecifies the spatial dimensions of aField cell, e.g., its width,
height, and depth, inRd. Combining this, the domain, and the corner position can specify
the mesh’s map from indices toRd.

4.1.3. Declaring Distributed Containers
In the previous section, we introduced the important concepts for declaring containers
for use on uniprocessor computers. When using multiprocessor computers, we augment
these concepts with those for distributed computation. Reading this section is important
only for running a program on multiple processors. Many of these concepts were in-
troduced in Section 3.6 and Section 3.8. Figure 3-4 illustrates the POOMA distributed
computation model. In this section, we concentrate on the concepts necessary to declare
a distributed container.

As we noted in Section 3.6, a POOMA programmer must specify how each container’s
domain should be distributed among the available processors and memory spaces. Us-
ing this information, the toolkit automatically distributes the data among the available
processors and handles any required communication among them. The three concepts
necessary for declaring distributed containers are a partition, a guard layer, and a con-
text mapper tag.
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A partition specifies how to divide a container’s domain into distributed pieces. For
example, the partition illustrated in Figure 3-4 would divide a two-dimensional domain
into three equally-sized pieces along the x-dimension and two equally-sized pieces along
the y-dimension. Partitions can be independent of the size of container’s domain. The
example partition will work on any domain as long as the size of its x-dimension is a
multiple of three. A domain is separated into disjoint patches.

A guard layersurrounds each patch with read-only values. Anexternal guard layer
specifies values surrounding the entire domain. Its presence eases computation along the
domain’s edges by permitting the same computations as for more-internal computations.
An internal guard layerduplicates values from adjacent patches so communication with
adjacent patches need not occur during a patch’s computation. The use of guard layers
is an optimization; using external guard layers eases programming and using internal
guard layers reduces communication among processors. Their use is not required.

A context mapperindicates how a container’s patches are mapped to processors and
shared memory. For example, theDistributedTag indicates that the patches
should be distributed among the processors so each patch occurs once in the entire
computation. TheReplicatedTag indicates that the patches should be replicated
among the processors so each processing unit has its own copy of all the patches. While
it could be wasteful to have different processors perform the same computation, repli-
cating a container can reduce possibly more expensive communication costs.

4.2. Computation Modes
POOMA computations can be expressed using a variety of modes. Many POOMA com-
putations involveArray or Field containers, but how their values are accessed and
how the associated algorithms use them varies. For example, element-wise computation
involves explicitly accessing a container’s values. A data-parallel computation operates
on larger subsets of a container’s values. Stencil-based computations express a compu-
tation as repeatedly applying a local computation to each element of an array. Relation-
based computations use relations on containers to establish dependencies among them so
the values of one container are updated whenever any other’s values change. A program
may use any or all of these styles, which are described below.

Element-wisecomputation accesses individual container values through explicit nota-
tion. For example, values in a two-dimensional container C might be referenced as
C(3,4) or C(i,j+1) . This is the usual notation for non-object-oriented languages
such as C.
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Data-parallel computation uses expressions to access subsets of a container’s values.
For example, in Example 3-3,a(I,J) represents the subset ofArray a ’s values
having coordinates in the domain specified by the direct product of one-dimensional
Interval s I andJ . Using data-parallel expressions frequently eliminates the need
for writing explicit loops.

Stencil-based computation usesstencilsto compute containers’ values using neighbor-
ing data values. Each stencil consists of a specification of which neighboring values to
read and a function using those values. For example, an averaging stencil may access
all its adjacent neighbors, averaging them. In POOMA, we represent a stencil using a
function object with additional functions indicating which neighboring values are used.
Stencil computations are frequently used in solving partial differential equations, image
processing, and geometric modeling.

Relation-based computation usesrelationsto create dependences among containers such
the dependent container’s values are updated when its values are needed and any of its
related containers’ values have changed. A relation is specified by a dependent container,
independent containers, and a function computing the dependent container’s values us-
ing the independent containers’ values. To avoid excess computation, the dependent
container’s values are computed only when needed, e.g., for printing the container or for
computing the values of another dependent container. Thus, this computation is some-
times called “lazy evaluation”.

4.3. Computation Environment
The same POOMA program can execute on a wide variety of computers. The default
sequential computing environmentconsists of one processor and its associated mem-
ory, as found on a personal computer. In contrast, adistributed computing environment
may have multiple processors and multiple distributed or shared memories. For exam-
ple, some desktop computers have dual processors and shared memory, while a large
supercomputer may have thousands of processors, perhaps with groups of eight sharing
the same memory.

Using distributed computation requires three things:

1. The program must declare how container domains will be distributed.

2. POOMA must be configured to use a communications library.

3. The POOMA executable must be run using the communications library.
All of these were illustrated in Section 3.6 and Section 3.8. Figure 3-4 illustrates the
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POOMA distributed computation model. Section 4.1.3 described how to declare con-
tainers with distributed domains. Here we present three concepts for distributed compu-
tation: patches, context, and a communication library.

A partition divides a container’s domain into disjointpatches. For distributed computa-
tion, the patches are distributed among various processors, which compute the associated
values. As illustrated in Figure 3-4, each patch can be surrounded by guard layers.

A contextis a collection of shared memory and processors that can execute a program
or a portion of a program. It can have one or more processors, but all these processors
must access the same shared memory. Usually the computer and its operating system,
not the programmer, determine the available contexts.

A communication librarypasses messages among contexts. POOMA uses the commu-
nication library to copy information among contexts, all of which is hidden from both
the programmer and the user. POOMA works with the Message Passing Interface (MPI)
Communications Library and the MM Shared Memory Library. See Section A.1 for
details.
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A container is an object holding objects.Array s are one of the two most widely used
POOMA containers since they model the mathematical concept of mapping from do-
main indices to values. POOMAArray s extend built-in C++ arrays by supporting a
wider variety of domains, automatically handling memory allocation, and having first-
class status. For example, they may be used as operands and in assignments. In this
chapter, we introduce the concept of containers, the mathematical concept of arrays,
and the POOMA implementation ofArray s. Before illustrating how to declareAr-
ray s, we introduceDomain s, which specify the sets of indices. After describing how
to declare the various types ofDomain s, we describe how to declare and useArray s.

5.1. Containers
A container classis a class whose main purpose is to hold objects. These stored objects,
calledcontainer valuesor more simply “values” or “elements”, may be accessed and
changed, usually using indices. “Container class” is usually abbreviated as “container”.

The six POOMA containers can be categorized into two groups. Mathematical contain-
ers includeTensor s, TinyMatrix s, andVector s, which model tensors, ma-
trices, and vectors, respectively. Storage containers includeArray s, DynamicAr-
ray s, andField s. In this chapter, we focus on simplest of these:Array s. Dy-
namicArray s are also described.

C has built-in arrays, and the C++ Standard Library providesmaps, vector s,
stack s, and other containers, but the POOMA containers better model scientific com-
puting concepts and provide more functionality. They automatically handle memory al-
location and deallocation and can be used in expressions and on the left-hand side of
assignments. Since POOMA containers separate the concepts of accessing and using
values from the concept of storing values, value storage can be optimized to specific
needs. For example, if most of anArray ’s values are known to be identical most of the
time, a compressible engine can be used. Whenever all the array’s values are identical, it
stores only one value. At other times, it stores all the values. Engines will be discussed
in Chapter 6.

5.2. Array s
Mathematically, an array maps domain indices to values. Usually, the domain consists of
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a one-dimensional integral interval or it may be a multidimensional domain. POOMA’s
Array container class implements this idea. Given an index, i.e., a position in anAr-
ray ’s Domain , it returns the associated value, either by returning a stored value or by
computing it. The indices are usually integral tuples but need not be zero-based or even
consist of all possible integral tuples in a multidimensional range. Using indices per-
mits constant-time access to values although computing a particular value may require
significant time.

POOMA Array s arefirst-class objectsso they can be used more easily than built-in
C++ arrays. For example,Array s can be used as operands and in assignment state-
ments. The statementa = a + b; adds corresponding values ofArray sa andb,
assigning the sums to theArray a . The statement treats each array as an object, rather
than requiring the use of one or more loops to access individual values. Data-parallel
statements such as this are further discussed in Chapter 7.Array s also handle their own
memory allocation and deallocation. For example, theArray declarationArray<2,
double, Brick> a(vertDomain) creates anArray a , allocating what-
ever memory it needs. Whena goes out of scope, it and its memory are automatically
deallocated. Automatic memory allocation and deallocation also eases copying.

Individual Array values can be accessed using parentheses, not square brackets, as
for C++ arrays. For example,a(3,4) yields the value at position (3,4) ofa’s two-
dimensional domain.

5.3. Domain s
A domainspecifies the set of points on which an array can define values. These indices
are the arguments placed within parentheses to select particular values, as described pre-
viously. A domain supported both byArray s and by built-in C++ arrays is the interval
[0,n-1] of integers containing all integers {0, 1, 2, . . . , n-1}. For C++, every integer in the
interval must be included, and the minimum index must be zero. POOMA expands the
set of permissible domains to support intervals with nonzero minimal indices, nonzero
strides, and other options.

In POOMA,Domain classes implement domains. There are four different categories:

Loc

Domain with a single point.
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Interval

Domain with an integral interval [a,b].

Range

Domain with an integral interval [a,b] and an integral stride s indicating the gap
between indices: {a, a+s, a+2s, . . . , b}.

Grid

Domain with an ascending or descending sequence of integral values. The se-
quence elements must be individually specified.

One-dimensional and multidimensional versions of the categories are supported. A mul-
tidimensionalDomain consists of the direct product of one-dimensionalDomain s.
For example, the first dimension of a two-dimensional interval [0,3]x[2,9] is the inter-
val [0,3], and its second dimension is the interval [2,9]. Its indices are ordered pairs such
as (0,2), (0,3), (1,2), (1,9), and (3,7).

Many domains can be represented using domain triplets. That is, adomain triplet
[begin :end :stride ] represents the mathematical set {begin, begin + stride, begin
+ 2stride, . . . , end}, whereend is in the set only if it equalsbegin plus some integral
multiple of stride . If the stride is negative, its beginning indexbegin should
at least be as large asend if the interval is to be nonempty. The stride can be zero only if
begin andend are equal. There are lots of ways to represent an empty interval, e.g.,
[1:0:1] and [23,34,-1], and POOMA will accept them, but they are all equivalent. The
domain triplet notation is easily extended to multiple dimensions by separating differ-
ent dimension’s intervals with commas. For example, [2:4:2,6:4:-2] contains (2,6), (2,4),
(4,6), and (4,4).

All the Domain categories listed above exceptGrid can be represented using do-
main triplet notation. Since the triplet [7:7:1] represents {7}, or more simply 7, it can
also represent the one-dimensionalLoc<1>(7) . MultidimensionalLoc s are simi-
larly represented. For example, [0:0:1,10:10:1,2:2:1] representsLoc<3>(0,10,2) ,
but it is frequently abbreviated as [0,10,2]. AnInterval [a,b] has unit stride: [a:b:1],
while aRange has specific stride s, e.g., [a:b:s].

Domain s can be constructed by combiningDomain s with smaller dimension.
For example, since a two-dimensionalInterval is the direct product of two
one-dimensionalInterval s, it can be specified using two one-dimensionalIn-
terval s. For example,Interval<2>(Interval<1>(2,3), Inter-
val<1>(4,5)) creates a [2:3:1,4:5:1]Domain . The resulting dimensionality
equals the sum of the components’ dimensions. For example, a four-dimensionLoc
can be specified using three- and one-dimensionLoc s or using four one-dimension
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Loc s. If fewer dimensions than the created object’s dimensionality, the last dimensions
are unspecified and uninitialized.Loc s, Interval s, Ranges, andGrid s can all
be composed from smaller similar components.

A Domain can be composed from smaller components with different types. A
Loc object can be constructed from otherLoc objects and integers.Interval s,
Ranges, andGrid s can be constructed using any of these types,Loc s, and integers.
For example,Interval<3> a(Loc<2>(1,2), Interval<1>(3,5))
uses a two-dimensionalLoc and a one-dimensionalInterval to create a
[1:1:1,2:2:1,3:5:1]Domain . During creation of aDomain , the type of each object is
changed to theDomain ’s type. In the example,Loc<2>(1,2) is first converted to
anInterval .

Domain s can participate in some arithmetic and comparison operations. For exam-
ple, aDomain ’s triplet can be shifted two units to the right by adding two. Multiply-
ing aDomain by two multiplies its triplet’s beginnings, endings, and strides by two.
POOMA users rarely need to compareDomain s, but we describe operating with the
less-than operator onInterval s: Interval d1 < Interval d2 if the length
of d1’s interval is less thand2 ’s or, if equal, its beginning value is smaller.Domain
arithmetic is frequently used with data-parallel statements and container views. These
will be discussed in Chapter 7 and Chapter 8.

The current POOMA implementation supportsDomain s with dimensionality between
one and seven, inclusive. Since most scientific computations use one, two, or three di-
mensions, this is usually sufficient. If more dimensions than seven are needed, they can
be added to the source code.

5.3.1. Declaring Domain s
SinceDomain s are mainly used to declare container domains, we focus on declar-
ing Domain s, deferring most discussion of their use. We subsequently describe a few
Domain operations but most, including arithmetic operations withDomain s, are de-
scribed in Chapter 8.

All Domain declarations require a dimension template parameterD. This positive in-
teger specifies the number of dimensions, i.e., rank, of theDomain and determines
the length of the tuples for points in theDomain . For example, a three-dimensional
Domain contains ordered triples, while a one-dimensionalDomain contains sin-
gletons, or just integers. MultidimensionalDomain s are just the direct products of
one-dimensionalDomain s so the techniques for declaring one-dimensionalDomain s
carry over to multidimensional ones.
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To declare aDomain , one must include thePooma/Domains.h header file. However,
most POOMA programs useDomain s when constructing containers. The storage con-
tainer header files automatically includePooma/Domains.h so no explicit inclusion is
usually necessary.

5.3.1.1. Loc s

A Loc<D> is a Domain with just a singleD-dimensional point. Although it is in-
frequently used as a container’s domain, it is used to refer to a single point within
another domain. Its beginning and ending points are the same, and its stride is one.
One-dimensionalLoc s and integers are frequently interchanged.

Table 5-1. Declaring One-DimensionalLoc s

constructor result
Loc<1>() indicates zero.

Loc<1>(const
Pooma::NoInit& no)

creates an uninitializedLoc<1> , to be
assigned a value later.

Loc<1>(const DT1& t1) creates aLoc<1> with the integer
converted fromt1 .

Loc<1>(const DT1& t1,
const DT2& t2)

creates aLoc<1> with the integer
converted fromt1 . t2 must equalt1 .

Loc<1>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aLoc<1> with the integer
converted fromt1 . t2 must equalt1 ,
andt3 is ignored.

DT1, DT2, andDT3 are template
parameters.

Constructors for one-dimensionalLoc s appear in Table 5-1. The empty constructor
yields the zero point. The constructor taking aPooma::Init object does not ini-
tialize the resultingLoc to any particular value. Presumably, the value will be as-
signed later. For smallDomain s such asLoc s, the time savings from not initializ-
ing is small, but the functionality is still available. The constructor taking one argument
with typeDT1 converts this argument to an integer to specify the point. The template
typeDT1may be any type that can be converted to an integer, e.g.,bool , char , int ,
or double . The constructors taking two and three arguments of templatized types fa-
cilitate converting anInterval<1> and aRange<1> into a Loc<1> . Since a
Loc represents a single point, theInterval ’s or Range’s first two arguments must
be equal. The stride is ignored. Again, the templatized types may be any type that can
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be converted into an integer.

Table 5-2. Declaring MultidimensionalLoc s

constructor result
Loc<D>() indicates zero.

Loc<D>(const
Pooma::NoInit& no)

creates an uninitializedLoc , to be
assigned a value later.

Loc<D>(const DT1& t1) creates aLoc using the givenDomain
object.

Loc<D>(const DT1& t1,
const DT2& t2)

creates aLoc using the givenDomain
objects.

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aLoc using the givenDomain
objects.

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)

creates aLoc using the givenDomain
objects.

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

creates aLoc using the givenDomain
objects.

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)

creates aLoc using the givenDomain
objects.

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

creates aLoc using the givenDomain
objects.

D indicates theLoc ’s dimension.DT1,
DT2, . . . are template parameters.

Constructors for multidimensionalLoc s appear in Table 5-2.D indicates theLoc ’s
dimension. The first two constructors are similar toLoc<1> ’s first two constructors,
returning a representation of the zero point and returning an uninitialized point. The
seven other constructors create aLoc using otherDomain objects. TheseDomain
objects, having typesDT1, . . . , DT7, can have any type that can be converted into
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an integer, to aLoc<1> , or to a multidimensionalDomain object that itself can
be converted into aLoc . The total dimensionality of all the arguments’ types should
be at mostD. For example,Loc<5>(Range<1>(2,2,2), Loc<2>(2,3),
Interval<1>(4,4)) creates a five-dimensionalLoc [2,2,3,4,1] using a one-
dimensionalRange, a two-dimensionalLoc , and a one-dimensionalInterval .
The final fifth dimension has an unspecified value, in this case 1. The one-dimensional
Range is converted into the single integer two; its beginning and ending points must
be the same. The two-dimensionalLoc contributes values for the next two dimensions,
while the Interval contributes its beginning point, which must be the same as its
ending point. Note that theLoc<1> constructors taking two and three parameters ig-
nore their second and third arguments, but this is not true for the multidimensional con-
structors.

5.3.1.2. Interval s

A one-dimensionalInterval represents a set of integers within a mathematicalin-
terval. MultidimensionalInterval s represent their multidimensional generalization,
i.e., the direct product of one-dimensional intervals.Interval s are arguably the most
commonly used POOMADomain . A one-dimensionalInterval has integral be-
ginning and ending points and a unit stride.

Table 5-3. Declaring One-DimensionalInterval s

constructor result
Interval<1>() creates an empty, uninitialized interval.

Interval<1>(const
Pooma::NoInit& no)

creates an uninitializedInterval<1> ,
to be assigned a value later.

Interval<1>(const DT1&
t1)

creates anInterval<1> . See the text
for an explanation.

Interval<1>(const DT1&
t1, const DT2& t2)

creates anInterval<1> with the
integers converted fromt1 andt2 .

Interval<1>(const DT1&
t1, const DT2& t2, const
DT3& t3)

creates anInterval<1> with the
integers converted fromt1 andt2 . t3
must equal 1.

DT1, DT2, andDT3 are template
parameters.

Interval<1> constructors are patterned onLoc<1> constructors except thatIn-
terval<1> s can have differing beginning and ending points. See Table 5-3. The
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default constructor creates an empty, uninitialized interval, which should not be used
before assigning it values. If the one-parameter constructor’s argument is aDomain
object, it must be a one-dimensionalDomain object which is converted into anIn-
terval if possible; for example, it must have unit stride. If the one-parameter con-
structor’s argument is not aDomain object, it must be convertible to an integere
and an interval [0:e-1:1] starting at zero is constructed. Note e-1, not e, is used so the
Interval<1> has e indices. If two arguments are specified, they are assumed to
be convertible to integersb ande, specifying the interval [b:e:1]. The three-parameter
constructor is similar, with the third argument specifying a stride, which must be one.

Table 5-4. Declaring Multidimensional Interval s

constructor result
Interval<D>() creates an empty, uninitialized

Interval , to be assigned a value later.

Interval<D>(const
Pooma::NoInit& no)

creates an empty, uninitialized
Interval , to be assigned a value later.

Interval<D>(const DT1&
t1)

creates anInterval using the given
Domain object.

Interval<D>(const DT1&
t1, const DT2& t2)

creates anInterval using the given
Domain objects.

Interval<D>(const DT1&
t1, const DT2& t2, const
DT3& t3)

creates anInterval using the given
Domain objects.

Interval<D>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4)

creates anInterval using the given
Domain objects.

Interval<D>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5)

creates anInterval using the given
Domain objects.

Interval<D>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6)

creates anInterval using the given
Domain objects.
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constructor result
Interval<D>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const DT7& t7)

creates anInterval using the given
Domain objects.

D indicates theInterval ’s dimension.
DT1, DT2, . . . are template parameters.

Constructors for multidimensionalInterval s closely follow constructors for multi-
dimensionalLoc s. See Table 5-4.D indicates theInterval ’s dimension. The first
two constructors both return empty, uninitialized intervals. The seven other constructors
create anInterval usingDomain objects. TheseDomain objects, having types
DT1, . . . , DT7, can have any type that can be converted into an integer, into a single-
dimensionalDomain object that can be converted into a single-dimensionalInter-
val , or to a multidimensionalDomain object that itself can be converted into an
Interval . The total dimensionality of all the arguments’ types should be at mostD.
One-dimensionalDomain objects that can be converted into one-dimensionalIn-
terval s includeLoc<1> s, Interval<1> s, andRange<1>s with unit strides.
If the sum of the objects’ dimensions is less thanD, the intervals for the final dimensions
are unspecified. See the last paragraph of Section 5.3.1.1 for an analogous example. Note
that theInterval<1> constructors taking two and three parameters treat these ar-
guments differently than the multidimensional constructors do.

5.3.1.3. Ranges

A one-dimensionalRange generalizes anInterval by permitting a non-unit stride
between integral members. Arangeis a set of integers in a mathematical interval [b,e]
with a stride s between them: {a, a+s, a+2s, . . . , b}. Ranges are generalized toDdimen-
sions using the direct product of one-dimensional ranges.

Table 5-5. Declaring One-DimensionalRanges

constructor result
Range<1>() creates an empty, uninitialized range.

Range<1>(const
Pooma::NoInit& no)

creates an uninitializedRange<1> , to
be assigned a value later.

Range<1>(const DT1& t1) creates aRange<1> . See the text for an
explanation.
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constructor result
Range<1>(const DT1& t1,
const DT2& t2)

creates aRange<1> with an interval
specified by the integers converted from
t1 andt2 .

Range<1>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aRange<1> by converting the
arguments to integersi1 , i2 , andi3
and then making a range [i1:i2:i3].

DT1, DT2, andDT3 are template
parameters.

Range<1> constructors are the same asInterval<1> constructors except they
create ranges, not intervals. See Table 5-5. The default constructor creates an empty,
uninitialized range, which should not be used before assigning it values. If the one-
parameter constructor’s argument is aDomain object, it must be a one-dimensional
Domain object which is converted into aRange if possible. If the one-parameter
constructor’s argument is not aDomain object, it must be convertible to an integere
and a range [0:e-1:1] starting at zero is constructed. Note e-1, not e, is used so the
Interval<1> has e indices. If two arguments are specified, they are assumed to
be convertible to integersb ande, specifying the range [b:e:1]. The three-parameter
constructor is similar, with the third argument specifying a stride.

Table 5-6. Declaring MultidimensionalRanges

constructor result
Range<D>() creates an empty, uninitializedRange, to

be assigned a value later.

Range<D>(const
Pooma::NoInit& no)

creates an empty, uninitializedRange, to
be assigned a value later.

Range<D>(const DT1& t1) creates aRange using the given
Domain object.

Range<D>(const DT1& t1,
const DT2& t2)

creates aRange using the given
Domain objects.

Range<D>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aRange using the given
Domain objects.

Range<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)

creates aRange using the given
Domain objects.
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constructor result
Range<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

creates aRange using the given
Domain objects.

Range<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)

creates aRange using the given
Domain objects.

Range<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

creates aRange using the given
Domain objects.

D indicates theRange’s dimension.
DT1, DT2, . . . are template parameters.

Constructors for multidimensionalRanges are the same as multidimensionalIn-
terval constructors except they create ranges, not intervals. See Table 5-6.D in-
dicates theRange’s dimension. The first two constructors return empty, uninitialized
ranges. The seven other constructors create anRange usingDomain objects. These
Domain objects, having typesDT1, . . . , DT7, can have any type that can be con-
verted into an integer, into a single-dimensionalDomain object that can be converted
into a single-dimensionalRange, or to a multidimensionalDomain object that itself
can be converted into anRange. The total dimensionality of all the arguments’ types
should be at mostD. One-dimensionalDomain objects that can be converted into one-
dimensionalRanges includeLoc<1> s,Interval<1> s, andRange<1>s. If the
sum of the objects’ dimensions is less thanD, the ranges for the final dimensions are un-
specified. See the last paragraph of Section 5.3.1.1 for an analogous example. Note that
the Range<1> constructors taking two and three parameters treat these arguments
differently than the multidimensional constructors do.

5.3.1.4. Grid s

Loc s,Interval s, andRanges all have regularly spaced integral values so they can
be represented usingdomain triplets. One-dimensionalGrid integral domains contain
ascending or descending sequences of integers, with no fixed stride. For example, a
Grid<1> may represent {-13, 1, 4, 5, 34}.Grid<1> is generalized to multidimen-
sionalGrid s using the direct product ofGrid<1> Domain s.
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Grid s that can be represented using domain triplets can be constructed using tech-
niques similar to otherDomain s, but irregularly spaced domains can be constructed
usingIndirectionList<int> s.

Table 5-7. Declaring One-DimensionalGrid s

constructor result
Grid<1>() creates an empty, uninitialized grid.

Grid<1>(const DT1& t1) creates aGrid<1> . See the text for an
explanation.

Grid<1>(const DT1& t1,
const DT2& t2)

creates aGrid<1> from the interval
specified by the integers converted from
t1 andt2 .

Grid<1>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aGrid<1> from the domain
triplet specified by the integers converted
from t1 , t2 , andt3 .

DT1, DT2, andDT3 are template
parameters.

To construct aGrid<1> that can also be represented by a domain triplet, use a
Grid<1> constructor similar to those forInterval<1> and Range<1> . See
Table 5-7 and the text explanations following Table 5-5 or Table 5-3.

Grid<1> s with irregularly spaced points can be constructed usingIndirection-
List<int> s. For example,

IndirectionList<int> list(4);
list(0) = 2;
list(1) = 5;
list(2) = 6;
list(3) = 9;
Grid<1> g(list);

constructs an emptyIndirectionList<int> , fills it with ascending values, and
then creates aGrid<1> containing {2, 5, 6, 9}. When creating a list, its size must be
specified. Subsequently, its values can be assigned.IndirectionList s can also
be initialized using one-dimensionalArray s:

Array<1,int,Brick> a1(Interval<1>(0,3));
a1(0) = 2; a1(1) = 5; a1(2) = 6; a1(3) = 9;
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IndirectionList<int> il(a1);
Grid<1> g1(il);

TheArray stores the integral points to include in theGrid<1> and is used to cre-
ate theIndirectionList<int> , which itself is used to create theGrid<1> .
Since the points are integers, theArray ’s type is int . Either aBrick or Com-
pressibleBrick Engine should be used.

Table 5-8. Declaring MultidimensionalGrid s

constructor result
Grid<D>() creates an empty, uninitializedGrid , to

be assigned a value later.

Grid<D>(const DT1& t1) creates aGrid using the givenDomain
object.

Grid<D>(const DT1& t1,
const DT2& t2)

creates aGrid using the givenDomain
objects.

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates aGrid using the givenDomain
objects.

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)

creates aGrid using the givenDomain
objects.

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

creates aGrid using the givenDomain
objects.

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)

creates aGrid using the givenDomain
objects.

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

creates aGrid using the givenDomain
objects.

D indicates theGrid ’s dimension.DT1,
DT2, . . . are template parameters.
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Constructors for multidimensionalGrid s are the same as multidimensionalInter-
val constructors except they createGrid s, not intervals. See Table 5-8.Dindicates the
Grid ’s dimension. The first constructor returns empty, uninitialized grids. The seven
other constructors create anGrid usingDomain objects. TheseDomain objects,
having typesDT1, . . . ,DT7, can have any type that can be converted into an integer, into
a single-dimensionalDomain object that can be converted into a single-dimensional
Grid , or to a multidimensionalDomain object that itself can be converted into an
Grid . The total dimensionality of all the arguments’ types should be at mostD. One-
dimensionalDomain objects that can be converted into one-dimensionalGrid s in-
cludeLoc<1> s,Interval<1> s,Range<1>s, andGrid<1> s. If the sum of the
objects’ dimensions is less thanD, the grids for the final dimensions are unspecified. See
the last paragraph of Section 5.3.1.1 for an analogous example. Note that theGrid<1>
constructors taking two and three parameters treat these arguments differently than the
multidimensional constructors do.

5.3.2. Using Domain s
Since anArray can be queried for its domain, we briefly describe someDomain
operations. A fuller description, including arithmetic operations, occurs in Chapter 8. As
we mentioned in Section 5.3.1, thePooma/Domains.h header file declaresDomain s,
but most storage container header files automatically includePooma/Domains.h so no
explicit inclusion is usually necessary.

Table 5-9. SomeDomain Accessors

Domain member function result
MultidimensionalDomain Accessors

long size() returns the total number of indices.

bool empty() returnstrue if and only if theDomain
has no indices.

D<1> operator[](int
dimension)

returns the one-dimensionalDomain for
the specified dimension. The return type is
a one-dimensional version of the
Domain .

One-dimensionalDomain Accessors

long length() returns the number of indices.

int first() returns the beginning of the domain.
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Domain member function result
int last() returns the ending of the domain.

int min() returns the minimum index in the domain.

int max() returns the maximum index in the domain.

D<1>::iterator begin() returns a forward iterator pointing to the
beginning domain index.

D<1>::iterator end() returns a forward iterator pointing to the
ending domain index.

Dabbreviates a particularDomain type,
e.g.,Interval or Grid . Other
Domain accessors are described in
Chapter 8.

Domain member functions are listed in Table 5-9. Functions applicable to both one-
dimensional and multidimensionalDomain s are listed before functions that only ap-
plicable to one-dimensionalDomain s. Thesize member function yields the total
number of indices in a givenDomain . If and only if this number is zero,empty
will yield true . A multidimensionaldomain<D> is the direct product of D one-
dimensionalDomain s. Theoperator[](int dimension) operator extracts
the one-dimensionalDomain corresponding to its parameter. For example, the three
one-dimensionalRange<1> Domain s can be extracted from aRange<3> objectr
usingr[0] , r[1] , andr[2] .

Domain accessors applicable only to one-dimensionalDomain s are listed in the sec-
ond half of Table 5-9. Thelength member function, analogous to the multidimen-
sionalsize function, returns the number of indices in theDomain . Thefirst and
last member functions return the domain’s beginning and ending indices. Thebe-
gin andend member functions return forward iterators pointing to these respective
locations. They have typeD<1>::iterator , whereD abbreviates theDomain ’s
type, e.g.,Interval or Grid . Themin andmaxmember functions return the min-
imum and maximum indices in theDomain object, respectively. ForLoc<1> and
Interval<1> , these yield the same values asfirst andlast , butRange<1>
andGrid<1> can have their numerically largest index at the beginning of theirDo-
main s.
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5.4. Declaring Array s
A POOMA Array mapsDomain indices to values. In this section, we describe how
to declareArray s. In the next section, we explain how to access individual values
stored within anArray and how to copyArray s.

Array values need not just be stored values, as C arrays have. The values can also be
computed dynamically by the engine associated with theArray . We defer discussion
of computing values to the next chapter discussing engines (Chapter 6). Therefore, when
we mention “the values stored in anArray ”, we implicitly mean “the values stored in
or computed by theArray ”.

Declaring anArray requires four arguments: the domain’s dimensionality, the type
of values stored or computed, a specification how the values are stored or computed,
and aDomain . The first three arguments are template parameters since few scientific
programs need to (and no POOMA programs can) change these values while a program
executes. For example, anArray cannot change the type of the values it stores, but an
Array ’s values can be copied into anotherArray having the desired type. Although
scientific programs do not frequently change an array’s domain, they do frequently re-
quest a subset of the array’s values, i.e., aview. The subset is specified via aDomain
so it is a run-time value. Views are presented in Chapter 8.

An Array ’s first template parameter specifies its dimensionality. This positive inte-
gerDspecifies its rank and has the same value as its domain’s dimensionality. Theoreti-
cally, anArray can have any positive integer, but the POOMA code currently supports
a dimensionality of at most seven. For almost all scientific codes, a dimension of three or
four is sufficient, but the POOMA code can be extended to support higher dimensions.

An Array ’s second template parameter specifies the type of its stored or computed val-
ues. Common value types includeint , double , complex , andVector , but any
type is permissible. For example, anArray ’s values might be matrices or even other
Array s. The parameter’s default value is usuallydouble , but it may be changed
when the POOMA Toolkit is configured.

An Array ’s third parameter specifies how its data is stored or computed by anEn-
gine and its values accessed. The argument is a tag indicating a particular type of
Engine . Permissible tags includeBrick , CompressibleBrick , andCon-
stantFunction . The Brick tag indicates allArray values will be explicitly
stored, just as built-in C arrays do. If anArray frequently stores exactly the same value
in every position, aCompressibleBrick Engine , which reduces its space re-
quirements to a constant whenever all its values are the same, is appropriate. ACon-
stantFunction Engine returns the same value for all indices. SomeEngine s
compute values, e.g., applying a function to every value in anotherEngine . These
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Engine s are discussed in Chapter 6. To avoid being verbose in the rest of this chap-
ter, we abbreviate “store or compute values” as “store values”. The engine parameter’s
default value is usuallyBrick , but it may be changed when the POOMA Toolkit is
configured.

Even though everyArray container has an engine to store its values and permit ac-
cess to individual values, the concept of anArray is conceptually separate from the
concept of an engine. An engine’s role is low-level, storing values and permitting access
to individual values. As we indicated above, the storage can be optimized to fit specific
situations such as few nonzero values and computing values using a function applied
to another engine’s values. AnArray ’s role is high-level, supporting access to groups
of values.Array s can be used in data-parallel expressions, e.g., adding all the val-
ues in oneArray to all the values in another. (See Chapter 7 for more information.)
Subsets ofArray values, frequently used in data-parallel statements, can be obtained.
(See Chapter 8 for more information.) Even though engines andArray s are concep-
tually separate, higher-levelArray s provide access to lower-levelEngine s. Users
usually have anArray create itsEngine (s), rarely explicitly creatingEngine s
themselves. Also,Array s support access to individual values. In short, POOMA users
useArray s, only dealing with how they are implemented (engines) when declaring
them. For a description ofEngine s, see Chapter 6.

An Array ’s one run-time argument is its domain. The domain specifies its extent and
consequently how many values it can return. All the providedDomain objects are
combined to yield anInterval<D> , where D matches theArray ’s first template
parameter. Since anInterval domain with its unit strides is used, there are no unac-
cessed “gaps” within the domain, wasting storage space. To use other domains to access
anArray , first create it using anInterval domain and then take a view of it, as
described in Chapter 8. As we mentioned above, the current POOMA code supports
up to seven dimensions so at most sevenDomain objects can be provided. If more
dimensions are required, the POOMA code can be extended to the desired number of
dimensions.

Array constructors are listed in Table 5-10. AnArray ’s three template parameters
for dimensionality, value type, and engine type are abbreviatedD, T, andE. Template
parameters for domain types are namedDT1, . . . , DT7. The first constructor, with no
domain arguments, creates an empty, uninitializedArray for which a domain must
be specified before it is used. Specify the array’s domain using itsinitialize
function. The next seven constructors combine their domain arguments to compute the
resultingArray ’s domain. These are combined in the same way that multidimen-
sional Interval s are constructed. (See Table 5-4 and the following text.) The do-
main objects, having typesDT1, . . . , DT7, can have any type that can be converted
into an integer, into a single-dimensionalDomain object that can be converted into

91



Chapter 5.Array Containers

a single-dimensionalInterval , or to a multidimensionalDomain object that it-
self can be converted into anInterval . The total dimensionality of all the argu-
ments’ types shouldequalD, unlike Interval construction which permits total di-
mensionality less than or equal toD. One-dimensionalDomain objects that can be
converted into one-dimensionalInterval s includeLoc<1> s, Interval<1> s,
andRange<1>s with unit strides. To initialize all of anArray ’s values to a specific
value, use one of the final seven constructors, each taking a particular value, wrapped as
aModelElement . These constructors use the given domain objects the same way as
the preceding constructors but assignmodel to everyArray value.model ’s type is
ModelElement<T> , rather thanT, to differentiate it from anint , which can also
be used to specify a domain object.ModelElement just stores an element of any
typeT, which must match theArray ’s value typeT.

Table 5-10. DeclaringArray s

Array declaration result
Array<D,T,E>() creates an empty, uninitializedArray

which must beinitialize ()d before
use.

Array<D,T,E>(const DT1&
t1)

creates anArray using the given
Domain object or integer.

Array<D,T,E>(const DT1&
t1, const DT2& t2)

creates anArray using the given
Domain objects and integers.

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3)

creates anArray using the given
Domain objects and integers.

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4)

creates anArray using the given
Domain objects and integers.

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5)

creates anArray using the given
Domain objects and integers.

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6)

creates anArray using the given
Domain objects and integers.
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Array declaration result
Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const DT7& t7)

creates anArray using the given
Domain objects and integers.

Array<D,T,E>(const DT1&
t1, const
ModelElement<T>& model)

creates anArray using the given
Domain object or integer and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
ModelElement<T>& model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const
ModelElement<T>& model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const ModelElement<T>&
model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const
ModelElement<T>& model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const
ModelElement<T>& model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .

Array<D,T,E>(const DT1&
t1, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const DT7& t7, const
ModelElement<T>& model)

creates anArray using the given
Domain objects and integers and then
initializes all entries usingmodel .
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Array declaration result
Template parametersD, T, andE indicates
theArray ’s dimension, value type, and
Engine type, respectively.DT1, . . . ,
DT7 indicate domain types or integers.

We illustrate creatingArray s. To create a three-dimensionalArray a explicitly stor-
ing double floating-point values, use

Interval<1> D(6);
Interval<3> I3(D,D,D);
Array<3,double,Brick> a(I3);

The template parameters specify its dimensionality, the type of its values, and aBrick
Engine type, which explicitly stores values. Its domain, which must have three dimen-
sions, is specified by anInterval<3> object which consists of [0,5] intervals for
all its three dimensions. Sincedouble andBrick are usually the default template
parameters, they can be omitted so these declarations are equivalent:

Array<3,double> a_duplicate1(I3);
Array<3> a_duplicate2(I3);.

To create a similarArray with a domain of [0:1:1, 0:2:1, 0:0:1], use

Array<3> b(2,3,1);

since specifying an integeri indicates a one-dimensional zero-basedInterval [0:i-
1:1]. To store booleans, specifybool as the second template argument:

Array<2,bool> c(2,3);

To specify a default Array value of true , use ModelEle-
ment<bool>(true) :

Array<2,bool> c(2,3, ModelElement<bool>(true));.

To create a one-dimensionalArray containing sevendouble s all equalingπ, use

const double pi = 4.0*atan(1.0);
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Array<1,double,CompressibleBrick>
d(7, ModelElement<double>(pi));.

We use aCompressibleBrick Engine , rather than aBrick Engine , so all
seven values will be stored in one location rather than in seven separate locations when
they are all the same.

An uninitializedArray , created using its parameter-less constructor, must have a spec-
ified domain before it can be used. For example, one must use the parameter-lessAr-
ray constructor when creating an array ofArray s usingnew so their domains must
be specified. (It would probably be better to create anArray of Array s since memory
allocation and deallocation would automatically be handled.)Array ’s initialize
functions accept the same set of domain object specifications and model elements that
theArray constructors do, creating the specified domain. See Table 5-11. For example,
botha andb are two-dimensionalArray s of float s with a [2:7:1,-2:4:1] domains:

// Create an Array and its domain.
Array<2,float,Brick> a(Interval<1>(2,7),

Interval<1>(-2,4));

// Create an Array without a domain and then specify
// its domain.
Array<2,float,Brick> b();
b.initialize(Interval<1>(2,7), Interval<1>(-2,4));.

Invoking initialize on anArray with an existing domain yields unspecified
behavior. AllArray values may be lost and memory may be leaked.

Table 5-11. Initializing Array s’ Domains

An Array ’s initialize member
functions sets its domain and
should be invoked only for an array
created without a domain. It returns
nothing.
initialize declaration result
initialize(const DT1& t1) creates theArray ’s domain using the

givenDomain object or integer.

initialize(const DT1& t1,
const DT2& t2)

creates theArray ’s domain using the
givenDomain objects and integers.
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An Array ’s initialize member
functions sets its domain and
should be invoked only for an array
created without a domain. It returns
nothing.
initialize declaration result
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3)

creates theArray ’s domain using the
givenDomain objects and integers.

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)

creates theArray ’s domain using the
givenDomain objects and integers.

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

creates theArray ’s domain using the
givenDomain objects and integers.

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)

creates theArray ’s domain using the
givenDomain objects and integers.

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

creates theArray ’s domain using the
givenDomain objects and integers.

initialize(const DT1& t1,
const ModelElement<T>&
model)

creates theArray ’s domain using the
givenDomain object or integer and then
initializes all entries usingmodel .

initialize(const DT1& t1,
const DT2& t2, const
ModelElement<T>& model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const
ModelElement<T>& model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
ModelElement<T>& model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .
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An Array ’s initialize member
functions sets its domain and
should be invoked only for an array
created without a domain. It returns
nothing.
initialize declaration result
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const
ModelElement<T>& model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const ModelElement<T>&
model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7, const
ModelElement<T>& model)

creates theArray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingmodel .

Template parametersDT1, . . . ,DT7
indicate domain types or integers.

5.5. Using Array s
In the previous section, we explained how to declare and initializeArray s. In this
section, we explain how to access individual values stored within anArray and how
to copyArray s. In Chapter 7, we explain how to use entireArray s in data-parallel
statements, including how to print them. In Chapter 8, we extend this capability to work
on subsets.

In its simplest form, anArray stores individual values, permitting access to these val-
ues. For a C++ array, the desired index is specified within square brackets following the
array’s name. For POOMAArray s, the desired index is specified within parentheses
following theArray ’s name. The same notation is used to read and write values. For
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example, the following code prints the initial value at index (2,-2) and increments its
value, printing the new value:

Array<2,int,Brick> a(Interval<1>(0,3),
Interval<1>(-2,4),

ModelElement<int>(4));
std::cout << a(2,-2) << std::endl;
++a(2,-2);
std::cout << a(2,-2) << std::endl;

4 and then5 are printed. An index specification for anArray usually has as many
integers as dimensions, all separated by commas, but theArray ’s engine may permit
other notation such as using strings or floating-point numbers.

For read-only access to a value, use theread member function, which takes the same
index notation as its nameless read-write counterpart:

std::cout << a.read(2,-2) << std::endl;

Usingread sometimes permits the optimizer to produce faster executing code.

CopyingArray s requires little execution time becauseArray s havereference se-
mantics. That is, a copy of anArray and theArray itself share the same underlying
data. Changing a value in one changes it in the other. Example 5-1 illustrates this behav-
ior. Initially, all values in the arraya are 4. Theb array is initialized usinga so it shares
the same values asa. Thus, changing the former’s value also changes the latter’s value.
Function arguments are also initialized so changing their underlying values also changes
the calling function’s values. For example, thechangeValue function changes the
value at index (0,0) for both its function argument anda.

Example 5-1. CopyingArray s

#include "Pooma/Pooma.h"
#include "Pooma/Arrays.h"
#include <iostream>

// Changes the Array value at index (0,0).
void changeValue(Array<2,int,Brick>& z)
{ z(0,0) = 6; }
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int main(int argc, char *argv[])
{

Pooma::initialize(argc,argv);

Array<2,int,Brick> a(3,4, ModelElement<int>(4));
std::cout << "Initial value:\n";
std::cout << "a: " << a(0,0) << std::endl;

// Array copies share the same underlying values.

// Explicit initialization uses reference semantics
// so changing the copy’s value at (0,0) also
// changes the original’s value.
Array<2,int,Brick> b(a);
b(0,0) = 5;
std::cout << "After explicit initialization.\n";
std::cout << "a: " << a(0,0) << std::endl;
std::cout << "b: " << b(0,0) << std::endl;

// Initialization of function arguments also uses
// reference semantics.
std::cout << "After function call:\n";
changeValue(a);
std::cout << "a: " << a(0,0) << std::endl;
std::cout << "b: " << b(0,0) << std::endl;

Pooma::finalize();
return 0;

}

The separation between a higher-levelArray and its lower-levelEngine storage
permits fast copying. AnArray ’s only data member is its engine, which itself has ref-
erence semantics that increments a reference-counted pointer to its data. Thus, copying
an Array requires creating a new object with one data member and incrementing a
pointer’s reference count. Destruction is similarly inexpensive.

Array assignment does not have reference semantics. Thus, the assignmenta = b en-
sures that all ofa’s values are the same asb at the time of assignment only. Subsequent

99



Chapter 5.Array Containers

changes toa’s values do not changeb’s values or vice versa. Assignment is more expen-
sive than creating a reference. Creating a reference requires creating a very small object
and incrementing a reference-counted pointer. An assignment requires storage for both
the left-hand side and right-hand side operands and traversing all of the right-hand side’s
data.

TheArray class has internal type definitions and constants useful for both compile-
time and run-time computations. See Table 5-12. These may be accessed using theAr-
ray ’s type and the scope resolution operator (:: ). The table begins with a list of in-
ternal type definitions, e.g.,Array<D,T,E>::This_t . A layoutmaps a domain
index to a particular processor and memory used to compute the associated value. The
two internal enumerationsdimensions andrank both record theArray ’s dimen-
sion.

Table 5-12.Array Internal Type Definitions and Compile-Time Constants

internal type or compile-time
constant

meaning

This_t theArray ’s typeArray<D,T,E> .

Engine_t theArray ’s Engine type
Engine<D,T,E> .

EngineTag_t theArray ’s Engine ’s tagE.

Element_t the typeT of values stored in theArray .

ElementRef_t the type of references to values stored in
theArray (usuallyT&).

Domain_t the type of theArray ’s domain.

Layout_t the type of theArray ’s layout.

const int dimensions the number D of dimensions of the
Array .

const int rank synonym fordimensions .

The Array class has several member functions easing access to its domain and en-
gine. The first ten functions listed in Table 5-13 ease access toArray domains. The
first three functions are synonyms all returning theArray ’s domain, which has type
Array<D,T,E>::Domain_t (abbreviatedDomain_t in the table). The next
seven functions query the domain.first , last , andlength return the first index,
last index, and number of indices for the specified dimension. The domain’s dimen-
sions are numbered 0, 1, . . . ,Array<D,T,E>::dimensions -1. If these values
are needed for all dimensions, usefirsts , lasts , and lengths . The returned
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Loc<D>s have D entries, one for each dimension.size returns the total number of
indices in the entire domain. This is the product of all the dimensions’length s. The
layout member function returns theArray ’s layout, which specifies the mapping
of indices to processors and memory. The last two functions return theArray ’s engine.

Table 5-13.Array Accessors

Array member function result
Domain_t domain() returns theArray ’s domain.

Domain_t physicalDomain() returns theArray ’s domain.

Domain_t totalDomain() returns theArray ’s domain.

int first(int dim) returns the first index value for the
specified dimension.

int last(int dim) returns the last index value for the
specified dimension.

int length(int dim) returns the number of indices (including
endpoints) for the specified dimension.

Loc<Dim> firsts() returns the first index values for all the
dimensions.

Loc<Dim> lasts() returns the last index values for all the
specified dimensions.

Loc<Dim> lengths() returns the numbers of indices (including
endpoints) for all the specified
dimensions.

long size() returns the total number of indices in the
domain.

Layout_t layout() returns theArray ’s layout.

Engine_t engine() returns theArray ’s engine.

const Engine_t engine() returns theArray ’s engine.

Internal type definitions, e.g.,
Domain_t , are listed here without the
class type prefixArray<D,T,E>:: .

We illustrate usingArray member functions in Example 5-2. The program com-
putes the total number ofArray ’s indices, comparing the result with invoking its
size method. Since theArray ’s name isa, a.size() returns its size. Thecom-
puteArraySize function also computes theArray ’s size. This templated func-
tion uses its three template parameters to accept anyArray , regardless of its dimen-
sion, value type, orEngine tag. It begins by obtaining the range of indices for all
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dimensions and their lengths. Only the latter is necessary for the computation, but using
the former further illustrates using member functions. The domain’s size is the product
of the length of each dimension. Since the lengths are stored in theLoc<D> lens ,
lens[d] is aLoc<1> , for which its first member function extracts the length.
The length Array member function is used in thePAssert .

Example 5-2. UsingArray Member Functions

#include "Pooma/Pooma.h"
#include "Pooma/Arrays.h"
#include <iostream>

// Print an Array’s Size

// This program illustrates using the Array member
// functions. computeArraySize’s computation is
// redundant because Array’s size() function computes
// the same value, but it illustrates using Array
// member functions.

template <int Dim,typename Type,typename EngineTag> (1)
inline
long computeArraySize(const Array<Dim,Type,EngineTag>& a)
{

const Loc<Dim> fs = a.firsts(); (2)
const Loc<Dim> ls = a.lasts();
const Loc<Dim> lens = a.lengths();
long size = 1;
for (int d = 0; d < Dim; ++d) {

size *= lens[d].first(); (3)
// Check that lengths() and our computed lengths agree.
PAssert((ls[d]-fs[d]+1).first()==a.length(d)); (4)

}
return size;

}

int main(int argc, char *argv[])
{

Pooma::initialize(argc,argv);
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Array<3,int,Brick> a(3,4,5, ModelElement<int>(4));
PAssert(computeArraySize(a) == a.size()); (5)
std::cout <<

"The array’s size is " << a.size() << ".\n";

Pooma::finalize();
return 0;

}

(1) These template parameters, used in theArray parameter’s type, permit the function
to work with anyArray .

(2) We invoke these three member functions using theArray ’s namea, a period, and
the functions’ names. These functions returnLoc s.

(3) lens[d] returns aLoc<1> for dimensiond’s length. Invoking Loc<1>
first method yields its value.

(4) This comparison is unnecessary but further illustrates using member functions.

(5) Thesize is invoked by prepending theArray ’s name followed by a period. This
assertion is unnecessary, but thecomputeArraySize function further illus-
trates using member functions.

5.6. DynamicArray s
Array s have fixed domains so the set of valid indices remains fixed after creation. The
DynamicArray classsupports one-dimensional domains that can be resized even
while the array is used.

DynamicArray ’s interface extends the one-dimensional interface of anArray
by adding member functions to change the domain’s size. It is declared inPooma/

DynamicArrays.h. A DynamicArray has two, not three, template parameters,
omitting the array’s dimensionality which must be one. The first parameterT specifies
the type of stored values. Its default value is usuallydouble , but this may be changed
when the POOMA Toolkit is configured. The second parameter specifies anEngine
via anEngine tag. The engine must support a domain with dynamic resizing. For ex-
ample, theDynamic Engine is analogous to a one-dimensionalBrick Engine
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supporting a dynamically-resizable domain. It is also usually the default value for this
tag. For example,DynamicArray<> d0(1); , DynamicArray<double>
d1(1); , and DynamicArray<double, Dynamic> d2(1); all declare
the sameDynamicArray s explicitly storing onedouble value. ADynamicAr-
ray automatically allocates its initial memory and deallocates its final memory, just as
anArray does.

The create anddestroy member functions permit changing aDynamicAr-
ray ’s domain. Table 5-14 lists these member functions but omits functions exclusively
used in distributed computation. When making the domain larger, new indices are added
to the end of the one-dimensional domain and the corresponding values are initialized
with the default value forT. Existing values are copied.

Table 5-14. Changing aDynamicArray ’s Domain

DynamicArray member function description
void create(int num) extend the current domain by the

requested number of elements.

void destroy(const Dom&
killList)

remove the values specified by the indices
in the givenDomain argument. The
“Backfill” method moves values from the
end of the domain to replace the deleted
values.

void destroy(Iter
killBegin, Iter killEnd)

remove the values specified by the indices
in the container range [begin,end)
specified by the random-access iterators.
The “Backfill” method moves values from
the end of the domain to replace the
deleted values.

void destroy(const Dom&
killList, const
DeleteMethod& method)

remove the values specified by the indices
in the givenDomain argument. Deleted
values can be replaced by
BackFill ’ing, i.e., moving data from
the domain’s end to fill removed values, or
by ShiftUp ’ing, i.e., compacting all
data but maintaining the relative ordering.
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DynamicArray member function description
void destroy(Iter
killBegin, Iter killEnd,
const DeleteMethod&
method)

remove the values specified by the indices
in the container range [begin,end)
specified by the random-access iterators.
Deleted values can be replaced by
BackFill ’ing, i.e., moving data from
the domain’s end to fill removed values, or
by ShiftUp ’ing, i.e., compacting all
data but maintaining the relative ordering.

This table omits member functions
designed for distributed computation.

The destroy member function deletes the specified indices. The indices may be
specified using either aDomain object (Interval<1> , Range<1> , or In-
directionList ) or by random-access iterators pointing into a container. For
example, every other value from a ten-value arrayd might be removed using
Range<1>(0,9,2) . Alternatively,

int killList[] = {0, 2, 4, 6, 8};
d.destroy(killList, killList+5);

performs the same deletions. As indices are removed, other indices are moved into their
positions. Using theBackFill method moves the last index and its associated value
into deleted index’s position. Thus, the total number of indices is decreased by one, but
the indices are reordered. Using theShiftUp method ensures the order of the indices
is preserved by “shifting” all values left (or up) so all “gaps” between indices disappear.
For example, consider removing the first index from a domain.

original indices: 0 1 2 3

destroy usingBackFill : 3 1 2

destroy usingShiftUp : 1 2 3

TheBackFill moves the rightmost index 3 into the removed index 0’s position. The
ShiftUp moves all the indices one position to the left. This illustrates thatBack-
Fill moves exactly as many indices as are deleted, whileShiftUp can shift all
indices in a domain. Thus,BackFill is the default method. When multiple indices
are deleted, they are deleted from the last (largest) to the first (smallest). When using
the BackFill method, some indices may be moved repeatedly. For example, con-
sider removing indices 0 and 2 from original indices of 0 1 2 3. Removing 2 yields 0
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1 3 because 3 is moved into 2’s position. Removing 0 yields 3 1 because 3 is again
moved. Use an object with the desired type to indicate which fill method is desired, i.e.,
BackFill() or ShiftUp() .

We illustrateDynamicArray resizing in Example 5-3.DynamicArray s are de-
clared inPooma/DynamicArrays.h, not Pooma/Arrays.h. Their declarations require
two, not three, template arguments because the array must be one-dimensional. The
three arrays, each having onedouble value, are equivalent. (The POOMA Toolkit
can be configured to support different default template values.) Invokingd0 ’s cre-
ate with an argument of five increases its domain size from one to six. The additional
indices are added to the end of the domain so the value at index 0 is not changed. To
illustrate which indices are removed and which indices are reordered, the program first
sets all values equal to their indices. This illustrates thatDynamicArray values are
accessed the same way asArray values. For example,d0(i) accesses thei th value.
Thedestroy member function removes every other index from the array because the
one-dimensionalRange specifies the domain’s entire interval with a stride of 2. The
BackFill function call creates aBackFill object indicating theBackFill
method should be used. We illustrate the steps of this method:

original indices: 0 1 2 3 4 5

delete index 4: 0 1 2 3 5

delete index 2: 0 1 5 3

delete index 0: 3 1 5

Since multiple indices are specified, the rightmost one is removed first, i.e., index 4. The
rightmost index 5 is moved into 4’s position. When removing index 2, the index origi-
nally at 5 is again moved into 2’s position. Finally, index 0 is replaced by index 3. The
rest of the program repeats the computation, using the random-access iterator version
of destroy . Since thisDynamicArray ’s indices are specified usingint s, the
killList explicitly lists the indices to remove. Thedestroy call uses pointers to
the beginning and end of thekillList array to specify which of its indices to use.
Since no replacement method is specified, the defaultBackFill method is used. All
theDynamicArray s’ unallocated memory is deallocated.

Example 5-3. Example UsingDynamicArray s

#include "Pooma/Pooma.h"
#include "Pooma/DynamicArrays.h" (1)
#include <iostream>
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// Demonstrate using DynamicArrays.

int main(int argc, char *argv[])
{

Pooma::initialize(argc,argv);

// Create a DynamicArray with one element. (2)
DynamicArray<> d0(1);
DynamicArray<double> d01(1);
DynamicArray<double, Dynamic> d02(1);

// Add five more elements. (3)
d0.create(5);
// Store values in the array.
for (int i = d0.domain().first(); i <= d0.domain().last(); ++i)

d0(i) = i; (4)

// Delete every other element. (5)
d0.destroy(Range<1>(d0.domain().first(),d0.domain().last(),2), BackFill());

// Print the resulting array.
std::cout << d0 << std::endl;

// Use the iterator form of ’destroy.’
DynamicArray<> d1(6);
for (int i = d1.domain().first(); i <= d1.domain().last(); ++i)

d1(i) = i;
int killList[] = { 0, 2, 4 }; (6)
d1.destroy(killList, killList+3);
std::cout << d1 << std::endl;

Pooma::finalize();
return 0;

}

(1) This header file declaresDynamicArray s.

(2) These three declarations yield equivalentDynamicArray s, storing onedou-
ble value.
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(3) Thiscreate member function call adds five indices to the end of the domain.

(4) DynamicArray values are accessed the same way asArray values.

(5) TheRange object specifies that every other index should be removed. TheBack-
Fill() object is unnecessary since it is the default replacement method.

(6) Thisdestroy call is equivalent to the previous one but uses iterators.
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Each container has one or moreEngine s to store or compute its values. As we men-
tioned in Section 5.4, a container’s role is high-level, supporting access to groups of
values, and an engine’s role is low-level, storing or computing values and supporting
access to individual values. This separation permits optimizing space and computation
requirements.

We begin this chapter by introducing the concept of an engine and how it is used. Then,
we describe the variousEngine s that POOMA provides, separating them into engines
that store values and engines that compute values.

6.1. The Concept
An engine performs the low-level value storage, computation, and element-wise access
for a container. An engine has a domain and accessor functions returning individual
elements. The POOMAEngine class and its specializations implement the engine
concept. Given an index within the domain, anEngine ’s operator() function
returns the associated value, which can be used or changed. Itsread member func-
tion returns the same value but permitting only use, not modification. The acceptable
indices are determined by eachEngine . Most accept indices specified usingint and
Loc<D> parameters, but anEngine might accept string or floating-point parameters.
An Engine ’s layout specifies maps its domain indices to the processors and memory
used to store and compute the associated values.

Since an engine’s main role is to return the individual values associated with specific
domain indices, any implementation performing this task is an engine. POOMAEn-
gine s fall into three categories:

• Engine s that store values.

• Engine s that compute their values using otherEngine s’ values.

• Engine s that support distributed computation.
For example, theBrick Engine explicitly stores all its values, while theCom-
pressibleBrick engine adds the feature of reducing its storage requirements if
all these values are identical. AUserFunction Engine yields values by apply-
ing a function objectto each value returned by anotherEngine . A CompFwd En-
gine projects components from anotherEngine . For example,CompFwdwill use
the second components of eachVector in anArray to form its ownArray . Since
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each container has at least oneEngine , we can also describe the latter category as
containers that compute their values using other containers’ values. AMultiPatch
Engine distributes its domain among various processors and memory spaces, each re-
sponsible for computing values associated with a portion, or patch, of the domain. The
Remote Engine also supports distributed computation.

Just as multiple containers can use the same engine, multipleEngine s can use the
same underlying data. As we mentioned in Section 5.5,Engine s havereference se-
mantics. A copy of anEngine has a reference-counted pointer to theEngine ’s data
(if any exists). Thus, copying anEngine or a container requires little execution time. If
anEngine has the same data as anotherEngine but it needs its own data to modify,
themakeOwnCopymember function creates such a copy.

Engine s are rarely explicitly declared. Instead a container is declared using anEn-
gine tag, and the container creates the specifiedEngine to deal with its values.
For example, aBrick Engine is explicitly declared asEngine<D,T,Brick> ,
but they are more frequently created by containers, e.g.,Array<D,T,Brick> . An
Engine ’s first two template parameters specify the domain’s dimensionality and the
value type, as described in Section 5.4. Unlike container declarations, the third template
parameter, theEngine tag, specifies whichEngine specialization to use. For ex-
ample, theBrick Engine tag indicates aBrick Engine should be used. Some
Engine s, such asCompFwd, are rarely declared even usingEngine tags. Instead
the Array ’s comp and readComp member functions return views of containers
usingCompFwd Engines.

6.2. Types of Engine s
In this section, we describe the different types ofEngine s and illustrate their creation,
when appropriate. First, we describeEngine s that explicitly store values and then
Engine s that compute values. See Table 6-1.

Table 6-1. Types ofEngine s

Engine tag description
Engine s That Store

Brick explicitly stores all values; similar to C
arrays.
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Engine tag description
CompressibleBrick stores all values, reducing storage

requirements when all values are
identical.

Dynamic is a one-dimensionalBrick with
dynamically resizable domain. This
should be used withDynamicArray ,
notArray .

Engine s That Compute

CompFwd extracts specified components of an
engine’s vectors, tensors, arrays, etc.;
usually created using thecomp container
function.

ConstantFunction makes a scalar value behave like a
container.

IndexFunction<FunctionObject> makes theFunctionObject ’s
function of indices behave like a
container.

ExpressionTag<Expr> evaluates an expression tree; usually
created by data-parallel expressions.

Stencil<Function,
Expression>

applies a stencil computation
(Function ) to its input
(Expression ) which is usually a
container; usually created by applying a
Stencil object to a container. A stencil
computation can use multiple neighboring
input values.

UserFunctionEngine<Function,
Expression>

applies the given function (orfunction
object) to its input (Expression )
which is usually a container; usually
created by applying aUserFunction
object to a container. The function
implements a one-to-one mapping from
its input to values.

Engine s for Distributed Computation

MultiPatch<LayoutTag,EngineTag> runs a separateEngineTag Engine
on each context (patch) specified by the
given layout. This is the usualEngine
for distributed computation.
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Engine tag description
Remote<EngineTag> runs theEngine specified by

EngineTag on a specified context.

Remote<Dynamic> runs aDynamic one-dimensional,
resizableEngine on a specified context.
This is a specialization ofRemote .

Brick Engine s explicitly store values just like C arrays.Compressible-
Brick Engine s optimize their storage requirements when all values are identical.
Many Array s use one of these twoEngine s. Brick s are the defaultEngine s
for Array andField containers because they explicitly store each value. This ex-
plicit storage can require a large amount of space, particularly if all these values are
the same. If all a compressible brickEngine ’s values are identical, theEngine
stores that one value rather than many, many copies of the same value. These engines
can both save time as well as space. Initializing a compressible engine requires setting
only one value, not every value. Using less storage space may also permit more useful
values to be stored in cache, improving cache performance. Reading a value in a com-
pressedEngine using theread member function is as fast as reading a value in a
Brick Engine , but writing a value always requires executing an additionalif con-
ditional. Thus, if anEngine infrequently has multiple different values during its life
time, aCompressibleBrick Engine may be faster than aBrick Engine .
If an Engine is created and its values are mostly read, not written, aCompress-
ibleBrick Engine may also be faster. Otherwise, aBrick Engine may be
preferable. Timing the same program using the two differentEngine types will re-
veal which is faster for a particular situation. In distributed computing, manyEngine s
may have few nonzero values soCompressibleBrick Engine s may be prefer-
able. For distributed computing, a container’s domain is partitioned into regions each
computed by a separate processor andEngine . If the computation is concentrated in
sections of the domain, manyEngine s may have few, if any, nonzero values. Thus,
CompressibleBrick Engine s may be preferable for distributed computing.

Both Brick andCompressibleBrick Engine s haveread andopera-
tor() member functions takingint andLoc parameters. The parameters should
match theArray ’s dimensionality. For example, ifArray a has dimensionality 3,
a.read(int, int, int) anda(int, int, int) should be used. The
former returns a value that cannot be modified, while the latter can be changed.
Using the read member function can lead to faster code. Alternatively, an index
can be specified using aLoc . For example,a.read(Loc<3>(1,-2,5)) and
a(Loc<3>(1,-2,5)) are equivalent toa.read(1,-2,5)) and a(1,-
2,5) .

112



Chapter 6. Engines

TheDynamic Engine supports changing domain sizes while a program is execut-
ing. It is basically a one-dimensionalBrick , explicitly storing values, but permitting
the number and order of stored values to change. Thus, it supports the same interface
asBrick except that all member functions are restricted to their one-dimensional ver-
sions. For example,read andoperator() takeLoc<1> or oneint parameter.
In addition, the one-dimensional domain can be dynamically resized usingcreate
anddestroy .
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In the previous chapters, we accessed container values one at a time. Accessing more
than one value in a container required a writing an explicit loop. Scientists and engineers
commonly operate on sets of values, treated as an aggregate. For example, a vector is a
one-dimension collection of data and two vectors can be added together. A matrix is a
two-dimensional collection of data, and a scalar and a matrix can be multiplied. Adata-
parallel expressionsimultaneously uses multiple container values. POOMA supports
data-parallel expressions.

After introducing data-parallel expressions and statements, we present the corresponding
POOMA syntax. Then we present its implementation, which uses expression-template
technology. A naïve data-parallel implementation might generate temporary variables,
cluttering a program’s inner loops and slowing its execution. Instead, POOMA uses
PETE, the Portable Expression Template Engine. Using expression templates, it con-
structs a parse tree of expressions and corresponding types, which is then quickly eval-
uated without the need for temporary variables.

7.1. Expressions with More Than One
Container Value

Science and math is filled with aggregated values. A vector contains several components,
and a matrix is a two-dimensional object. Operations on individual values are frequently
extended to operations on these aggregated values. For example, two vectors having
the same length are added by adding corresponding components. The product of two
matrices is defined in terms of sums and products on its components. The sine of an
array is an array containing the sine of every value in it.

A data-parallel expressionsimultaneously refers to multiple container values. Data-
parallel statements, i.e., statements using data-parallel expressions, frequently occur in
scientific programs. For example, the sum of two vectors v and w is written as v+w. Al-
gorithms frequently use data-parallel syntax. Consider, for example, computing the total
energy E as the sum of kinetic energy K and potential energy U. For a simple particle
subject to the earth’s gravity, the kinetic energy K equals mv2/2, and the potential en-
ergy U equals mgh. These formulae apply to both an individual particle with a particular
mass m and height h and to an entire field of particles with masses m and heights h. Our
algorithm works with data-parallel syntax, and we would like to write the corresponding
computer program using data-parallel syntax as well.
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7.2. Using Data-Parallel Expressions
POOMA containers can be used in data-parallel expressions and statements. The basic
guidelines are simple:

• The C++ built-in and mathematical operators operate on an entire container by oper-
ating element-wise on its values.

• Binary operators operate only on containers with the same domain types and by com-
bining values with the same indices. If the result is a container, it has a domain equal
to the left operand’s domain.

• For assignment operators, the domains of the left operand and the right operand must
have the same type and be conformable, i.e., have the “same shape”.

The data-parallel operators operate element-wise on containers’ values. For example, if
A is a one-dimensional array,- A is a one-dimensional array with the same size such
that the value at the ith position equals -A(i). IfA andB are two-dimensionalArray s
on the same domain,A+B is an array on the same domain with values equaling the sum
of corresponding values inA andB.

Binary operators operate on containers with the same domain types. The domain’s in-
dices need not be the same, but the result will have a domain equal to the left operand.
For example, the sum of anArray A with a one-dimensional interval [0,3] and an
Array B with a one-dimensional interval [1,2] is well-defined because both domains
are one-dimensional intervals. The result is anArray with a one-dimensional inter-
val [0,3]. Its first and last entries equalA’s first and last entries, while its middle two
entries are the sumsA(1)+B(1) andA(2)+B(2) . We assume zero is the default
value for the type of values stored inB. A more complicated example of adding two
Array s with different domains is illustrated in Figure 7-1. Code for theseArray s
could be

Interval<1> H(0,2), I(1,3), J(2,4);
Array<2, double, Brick> A(I,I), B(J,H);
// ... fill A and B with values ...
... = A + B;
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Figure 7-1. Adding Array s with Different Domains

AddingArray s with different domains is supported. Solid lines indicate the domains’
extent. Values with the same indices are added.

Both A andB have domains of two-dimensional intervals so they may be added, but
their domains’ extent differ, as indicated by the solid lines in the figure. The sum has
domain equal to the left operand’s domain. Values with the same indices are added. For
example,A(2,2) andB(2,2) are added.B’s domain does not include index (1,1)
so, when addingA(1,1) andB(1,1) , the default value forB’s value type is used.
Usually this is 0. Thus,A(1,1) + B(1,1) equals9 + 0 .

Operations with bothArray s and scalar values are supported. Conceptually, a scalar
value can be thought of as anArray with any desired domain and having the same
value everywhere. For example, consider

Array<1, double, Brick> D(Interval<1>(7,10));
D += 2*D + 7;

2*D obeys the guidelines because the scalar2 can be thought of as an array with the
same domain asD. It has the same value2 everywhere. Likewise the conceptual domain
for the scalar7 is the same as2*D ’s domain. Thus,2*D(i) + 7 is added toD(i)
wherever index i is inD’s domain. In practice, the toolkit does not first convert scalar
values to arrays but instead uses them directly in expressions.

Assignments to containers are also supported. The domain types of the assignment’s
left-hand side and its right-hand side must be the same. Their indices need not be the
same, but they must correspond. That is, the domains must beconformable, or have the
“same shape”, i.e., have the same number of indices for each dimension. For example,
the one-dimensional interval [0,3] is conformable to the one-dimensional interval [1,4]
because they both have the same number of indices in each dimension. The domains of
A andB, as declared
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Interval<1> H(0,2), I(1,3), J(2,4), K(0,4);
Array<2, double, Brick> A(I,I), B(H,J), C(I,K);

are conformable because each dimension has the same number of indices.A andC are
not conformable because, while their first dimensions are conformable, their second
dimensions are not conformable. It has three indices while the other has five. We define
conformable containersto be containers with conformable domains.

When assigning to a container, corresponding container values are assigned. (Since the
left-hand side and the right-hand side are conformable, corresponding values exist.) In
this code fragment,

Array<1, double, Brick> A(Interval<1>(0,1));
Array<1, double, Brick> B(Interval<1>(1,2));
A = B;

A(0) is assignedB(1) andA(1) is assignedB(2) .

Assigning a scalar value to anArray also is supported, but assigning anArray to a
scalar is not. A scalar value is conformable to any domain because, conceptually it can be
viewed as anArray with any desired domain and having the same value everywhere.
Thus, the assignmentB = 3 ensures every value inB equals 3. Even though a scalar
value is conformable to anyArray , it is not an l-value so it cannot appear on the
left-hand side of an assignment.

Data-parallel expressions can involve typical mathematical functions and output opera-
tions. For example,sin(A) yields anArray with values equal to the sine of each of
Array A ’s values.dot(A,B) has values equaling the dot product of corresponding
values inArray s A andB. The contents of an entireArray can be easily printed to
standard output. For example, the program

Array<1, double, Brick> A(Interval<1>(0,2));
Array<1, double, Brick> B(Interval<1>(1,3));
A = 1.0;
B = 2.0;
std::cout << A-B << std::endl;

yields (000:002:001) = 1 -1 -1 . The initial (000:002:001) indi-
cates theArray ’s domain ranges from 0 to 2 with a stride of 1. The three values in
A-B follow.
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The following four tables list the data-parallel operators that operate onArray s. Table
7-1 lists standard C++ operators that can be applied toArray s and also scalar values
if appropriate. Each unary operator takes anArray parameter and returns anArray .
The types of the twoArray s need not be the same. For example,! can take anAr-
ray<bool> , Array<int> , Array<long> , or any other value type to which!
can be applied. The result is anArray<bool> . Each binary operator also returns an
Array . When specifying twoArray s or anArray and a scalar value, a full set of
operators is supported. When specifying anArray and aTensor , TinyMatrix ,
or Vector , a more limited set of operators is supported. For example,== can take
two Array s, anArray and a scalar value, or a scalar value and anArray . If given
two Array s, corresponding values are used. If an argument is a scalar value, its same
value is the used with eachArray value. The+ supports the same set of parameters but
also supports adding anArray and aTensor , anArray and aTinyMatrix , an
Array and aVector , a Tensor and anArray , a TinyMatrix and anAr-
ray , and aVector and anArray . For these cases, theArray must have a value
type that can be added to the other argument. For example, aVector can be added to
anArray of Vector s.

Table 7-1. Operators Permissible for Data-Parallel Expressions

supported operators
unary operators +, - , ~, !
binary operators with at least oneArray
and at most one scalar value

+, - , * , / , %, &, | , ^ , <, <=, >=, >, ==,
!= , &&, || , <<, >>

binary operators with at least oneArray
and at most oneTensor ,
TinyMatrix , or Vector

+, - , * , / , %, &, | , ^ , ==, !=

Mathematical functions that can be used in data-parallel expressions appear in Table 7-2.
For example, applyingcos to anArray of values with typeT yields anArray with
the same type. The functions are split into five sections:
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• trigonometric and hyperbolic functions,

• functions computing absolute values, rounding functions, and modulus functions,

• functions computing powers, exponentiation, and logarithms,

• functions involving complex numbers, and

• functions for operating on matrices and tensors.
Several data-parallel functions require inclusion of header files declaring their underly-
ing element-wise function. These header files are listed at the beginning of each section.
For the data-parallel operator to be applicable, it must operate on theArray ’s type.
For example,cos can be applied onArray s of int , double , and evenbool , but
applying onArray s of pointers is not supported becausecos cannot be called with a
pointer argument.

Two functions deserve special explanation. ThePETE_identity function applies
the identity operation to the array. That is, the returned array has values equaling the
argument’s values.pow2, pow3, andpow4 provide fast ways to compute squares,
cubes, and fourth powers of their arguments.

Table 7-2. Mathematical Functions Permissible for Data-Parallel Expressions

function effect
Trigonometric and Hyperbolic Functions#include <math.h>

Array<T> cos (const
Array<T>& A)

Returns the cosines of theArray ’s
values.

Array<T> sin (const
Array<T>& A)

Returns the sines of theArray ’s values.

Array<T> tan (const
Array<T>& A)

Returns the tangents of theArray ’s
values.

Array<T> acos (const
Array<T1>& A)

Returns the arc cosines of theArray ’s
values.

Array<T> asin (const
Array<T1>& A)

Returns the arc sines of theArray ’s
values.

Array<T> atan (const
Array<T1>& A)

Returns the arc tangents of theArray ’s
values.

Array<T> atan2 (const
Array<T1>& A, const
Array<T2>& B)

Computes the arc tangents of the values
from the division of elements inB by the
elements inA. The resulting values are the
signed angles in the range -π to π,
inclusive.
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function effect
Array<T> atan2 (const
Array<T1>& A, const T2&
r)

Computes the arc tangents of the values
from the division ofr by the elements
in A. The resulting values are the signed
angles in the range -π to π, inclusive.

Array<T> atan2 (const T1&
l, const Array<T2>& B)

Computes the arc tangents of the values
from the division of elements inB by l .
The resulting values are the signed angles
in the range -π to π, inclusive.

Array<T> cosh (const
Array<T>& A)

Returns the hyperbolic cosines of the
Array ’s values.

Array<T> sinh (const
Array<T>& A)

Returns the hyperbolic sines of the
Array ’s values.

Array<T> tanh (const
Array<T>& A)

Returns the hyperbolic tangents of the
Array ’s values.

Absolute Value, Rounding, and Modulus
Functions

#include <math.h>

Array<T> fabs (const
Array<T1>& A)

Returns the absolute values of the floating
point numbers in theArray .

Array<T> ceil (const
Array<T1>& A)

For each of theArray ’s values, return
the integer larger than or equal to it (as a
floating point number).

Array<T> floor (const
Array<T1>& A)

For each of theArray ’s values, return
the integer smaller than or equal to it (as a
floating point number).

Array<T> fmod (const
Array<T1>& A, const
Array<T2>& B)

Computes the floating-point modulus
(remainder) ofA’s values with the
corresponding value inB. The results
have the same signs asA and absolute
values less than the absolute values ofB.

Array<T> fmod (const
Array<T1>& A, const T2&
r)

Computes the floating-point modulus
(remainder) ofA’s values withr . The
results have the same signs asA and
absolute values less than the absolute
value ofr .
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function effect
Array<T> fmod (const T1&
l, const Array<T2>& B)

Computes the floating-point modulus
(remainder) ofl with the values inB. The
results have the same signs asl and
absolute values less than the absolute
values ofB.

Powers, Exponentiation, and Logarithmic
Functions

#include <math.h>

Array<T> PETE_identity
(const Array<T>& A)

Returns theArray . That is, it applies the
identity operation.

Array<T> sqrt (const
Array<T>& A)

Returns the square roots of theArray ’s
values.

Array<T> pow (const
Array<T1>& A, const
Array<T2>& B)

RaisesA’s values by the corresponding
power inB.

Array<T> pow (const
Array<T1>& A, const T2&
r)

RaisesA’s values by the powerr .

Array<T> pow (const T1&
l, const Array<T2>& B)

Raisesl by the powers inB.

Array<T> pow2 (const
Array<T>& A)

Returns the squares ofA’s values.

Array<T> pow3 (const
Array<T>& A)

Returns the cubes ofA’s values.

Array<T> pow4 (const
Array<T>& A)

Returns the fourth powers ofA’s values.

Array<T> ldexp (const
Array<T1>& A, const
Array<int>& B)

Multiplies A’s values by two raised to the
corresponding value inB.

Array<T> ldexp (const
Array<T1>& A, int r)

Multiplies A’s values by two raised to the
r th power.

Array<T> ldexp (const T1&
l, const Array<int>& B)

Multiplies l by two raised to the values
in B.

Array<T> exp (const
Array<T>& A)

Returns the exponentiations of the
Array ’s values.

Array<T> log (const
Array<T>& A)

Returns the natural logarithms of the
Array ’s values.
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function effect
Array<T> log10 (const
Array<T>& A)

Returns the base-10 logarithms of the
Array ’s values.

Functions Involving Complex Numbers #include <complex>

Array<T> real (const
Array<complex<T>>& A)

Returns the real parts ofA’s complex
numbers.

Array<T> imag (const
Array<complex<T>>& A)

Returns the imaginary parts ofA’s
complex numbers.

Array<T> abs (const
Array<complex<T>>& A)

Returns the absolute values (magnitudes)
of A’s complex numbers.

Array<T> abs (const
Array<T>& A)

Returns the absolute values ofA’s values.

Array<T> arg (const
Array<complex<T>>& A)

Returns the angle representations (in
radians) of the polar representations ofA’s
complex numbers.

Array<T> norm (const
Array<complex<T>>& A)

Returns the squared absolute values ofA’s
complex numbers.

Array<complex<T>> conj
(const Array<complex<T>>&
A)

Returns the complex conjugates ofA’s
complex numbers.

Array<complex<T>> polar
(const Array<T1>& A,
const Array<T2>& B)

Returns the complex numbers created
from polar coordinates (magnitudes and
phase angles) in correspondingArray s.

Array<complex<T>> polar
(const T1& l, const
Array<T2>& A)

Returns the complex numbers created
from polar coordinates with magnitudel
and phase angles in theArray .

Array<complex<T>> polar
(const Array<T1>& A,
const T2& r)

Returns the complex numbers created
from polar coordinates with magnitudes in
theArray and phase angler .

Functions Involving Matrices and Tensors#include "Pooma/Tiny.h"

T trace (const Array<T>&
A)

Returns the sum of theA’s diagonal
entries, viewed as a matrix.

T det (const Array<T>& A) Returns the determinant ofA, viewed as a
matrix.

Array<T> transpose (const
Array<T>& A)

Returns the transpose ofA, viewed as a
matrix.

Array<T> symmetrize
(const Array<T>& A)

Returns the tensors ofA with the
requested output symmetry.
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function effect
Array<T> dot (const
Array<T1>& A, const
Array<T2>& B)

Returns the dot products of values in the
two Array s. Value typeT equals the
type of thedot operating onT1 andT2.

Array<T> dot (const
Array<T1>& A, const T2&
r)

Returns the dot products of values in the
Array with r . Value typeT equals the
type of thedot operating onT1 andT2.

Array<T> dot (const T1&
l, const Array<T2>& A)

Returns the dot products ofl with values
in theArray . Value typeT equals the
type of thedot operating onT1 andT2.

Array<Tensor<T>>
outerProduct (const
Array<T1>& A, const
Array<T2>& B)

Returns tensors created by computing the
outer product of corresponding vectors in
the twoArray s. Value typeT equals the
type of the product ofT1 andT2. The
vectors must have the same length.

Array<Tensor<T>>
outerProduct (const T1&
l, const Array<T2>& A)

Returns tensors created by computing the
outer product ofl with the vectors in the
Array . Value typeT equals the type of
the product ofT1 andT2. The vectors
must have the same length.

Array<Tensor<T>>
outerProduct (const
Array<T1>& A, const T2&
r)

Returns tensors created by computing the
outer product of vectors in theArray
with r . Value typeT equals the type of
the product ofT1 andT2. The vectors
must have the same length.

TinyMatrix<T>
outerProductAsTinyMatrix
(const Array<T1>& A,
const Array<T2>& B)

Returns matrices created by computing
the outer product of corresponding vectors
in the twoArray s. Value typeT equals
the type of the product ofT1 andT2. The
vectors must have the same length.

TinyMatrix<T>
outerProductAsTinyMatrix
(const T1& l, const
Array<T2>& A)

Returns matrices created by computing
the outer product ofl with the vectors in
theArray . Value typeT equals the type
of the product ofT1 andT2. The vectors
must have the same length.

123



Chapter 7. Data-Parallel Expressions

function effect
TinyMatrix<T>
outerProductAsTinyMatrix
(const Array<T1>& A,
const T2& r)

Returns matrices created by computing
the outer product of the vectors in the
Array with r . Value typeT equals the
type of the product ofT1 andT2. The
vectors must have the same length.

Type restrictions from how the underlying
functions operate on individual elements
may restrict permissible choices for the
template type parameters.

Comparison functions appear in Table 7-3.max andmin functions supplement named
comparison functions. For example,LT andLE compute the same thing as the< and
<= operators.

Table 7-3. Comparison Functions Permissible for Data-Parallel Expressions

function effect
Array<T> max (const
Array<T1>& A, const
Array<T2>& B)

Returns the maximum of corresponding
Array values.

Array<T> max (const T1&
l, const Array<T2>& A)

Returns the maximums ofl with the
Array ’s values.

Array<T> max (const
Array<T1>& A, const T2&
r)

Returns the maximums of theArray ’s
values withr .

Array<T> min (const
Array<T1>& A, const
Array<T2>& B)

Returns the minimum of corresponding
Array values.

Array<T> min (const T1&
l, const Array<T2>& A)

Returns the minimums ofl with the
Array ’s values.

Array<T> min (const
Array<T1>& A, const T2&
r)

Returns the minimums of theArray ’s
values withr .

Array<bool> LT (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from using the less-than
operator< to compare corresponding
Array values inA andB.
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function effect
Array<bool> LT (const T1&
r, const Array<T2>& A)

Returns booleans from using the less-than
operator< to comparel with the
Array ’s values.

Array<bool> LT (const
Array<T1>& A, const T2&
r)

Returns booleans from using the less-than
operator< to compare theArray ’s
values withr .

Array<bool> LE (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from using the
less-than-or-equal operator<= to
compareArray values inA andB.

Array<bool> LE (const T1&
l, const Array<T2>& A)

Returns booleans from using the
less-than-or-equal operator<= to
comparel with theArray ’s values.

Array<bool> LE (const
Array<T1>& A, const T2&
r)

Returns booleans from using the
less-than-or-equal operator<= to
compare theArray ’s values withr .

Array<bool> GE (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from using the
greater-than-or-equal operator>= to
compareArray values inA andB.

Array<bool> GE (const T1&
l, const Array<T2>& A)

Returns booleans from using the
greater-than-or-equal operator>= to
comparel with theArray ’s values.

Array<bool> GE (const
Array<T1>& A, const T2&
r)

Returns booleans from using the
greater-than-or-equal operator>= to
compare theArray ’s values withr .

Array<bool> GT (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from using the
greater-than operator> to compare
Array values inA andB.

Array<bool> GT (const T1&
l, const Array<T2>& A)

Returns booleans from using the
greater-than operator> to comparel with
theArray ’s values.

Array<bool> GT (const
Array<T1>& A, const T2&
r)

Returns booleans from using the
greater-than operator> to compare the
Array ’s values withr .

Array<bool> EQ (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from determining
whether correspondingArray values in
A andB are equal.
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function effect
Array<bool> EQ (const T1&
l, const Array<T2>& A)

Returns booleans from determining
whetherl equals theArray ’s values.

Array<bool> EQ (const
Array<T1>& A, const T2&
r)

Returns booleans from determining
whether theArray ’s values equalr .

Array<bool> NE (const
Array<T1>& A, const
Array<T2>& B)

Returns booleans from determining
whether correspondingArray values in
A andB are not equal.

Array<bool> NE (const T1&
l, const Array<T2>& A)

Returns booleans from determining
whetherl does not equal theArray ’s
values.

Array<bool> NE (const
Array<T1>& A, const T2&
r)

Returns booleans from determining
whether theArray ’s values are not
equal tor .

The table of miscellaneous functions (Table 7-4) contains two functions.peteCast
casts all values in anArray to the type specified by its first parameter. Thewhere
function generalizes the trinary?: operator. Using its firstArray argument as boolean
values, it returns anArray of just two values:t andf .

Table 7-4. Miscellaneous Functions Permissible for Data-Parallel Expressions

function effect
Array<T> peteCast (const
T1&, const Array<T>& A)

Returns the casting of theArray ’s
values to typeT1.

Array<T> where (const
Array<T1>& A, const T2&
t, const T3& f)

Generalizes the?: operator, returning an
Array of t andf values depending on
whetherA’s values are true or false,
respectively.

Throughout this chapter, we illustrate data-parallel expressions and statements operating
on all of a container’s values. Frequently, operating on a subset is useful. In POOMA,
a subset of a container’s values is called a view. Combining views and data-parallel ex-
pressions will enable us to more succinctly and more easily write theDoof2d diffusion
program. Views are discussed in the next chapter.
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7.3. Implementation of Data-Parallel Statements
Data-parallel statements involving containers occur frequently in the inner loops of sci-
entific programs so their efficient execution is important. A naïve implementation for
these statements may create and destroy containers holding intermediate values, slow-
ing execution considerably. In 1995, Todd Veldhuizen and David Vandevoorde each de-
veloped an expression-template technique to transform arithmetic expressions involv-
ing array-like containers into efficient loops without using temporaries. Despite its per-
ceived complexity, POOMA incorporated the technology. The framework called PETE,
the Portable Expression Template Engine framework, is also available separately from
POOMA athttp://www.acl.lanl.gov/pete/.

In this chapter, we first describe how a naïve implementation may slow execution. Then,
we describe PETE’s faster implementation. PETE converts a data-parallel statement into
a parse tree, rather than immediately evaluating it. The parse tree has two representa-
tions. Its run-time representation holds run-time values. Its compile-time representation
records the types of the tree’s values. After a parse tree for the entire statement is con-
structed, it is evaluated. Since it is a data-parallel statement, this evaluation involves at
least one loop. At run time, for each loop iteration, the value of one container value is
computed and assigned. At compile time, when the code for the loop iteration is pro-
duced, the parse tree’s types are traversed and code is produced without the need for any
intermediate values. We present the implementation in Section 7.3.2, but first we explain
the difficulties caused by the naïve implementation.

7.3.1. Naïve Implementation
A conventional implementation to evaluate data-parallel expressions might overload
arithmetic operator functions. Consider this program fragment:

Interval<1> I(0,3);
Array<1, double, Brick> A(I), B(I);
A = 1.0;
B = 2.0;
A += -A + 2*B;
std::cout << A << std::endl;

Our goal is to transform the data-parallel statementA += -A + 2*B into a single
loop, preferably without using intermediary containers. To simplify notation, letAr
abbreviate the typeArray<1, double, Brick> .
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Using overloaded arithmetic operators would require using intermediate containers to
evaluate the statement. For example, the sum’s left operand-A would be computed
by the overloaded unary operatorAr operator-(const Ar&) , which would
produce an intermediateArray . Ar operator*(double, const Ar&)
would produce another intermediateArray holding 2*B . Yet another intermediate
container would hold their sum, all before performing the assignment. Thus, three inter-
mediate containers would be created and destroyed. Below, we show these are unneces-
sary.

7.3.2. Portable Expression Template Engine
POOMA uses PETE, the Portable Expression Template Engine framework, to evaluate
data-parallel statements using efficient loops without intermediate values. PETE uses
expression-template technology. Instead of evaluating a data-parallel statement’s subex-
pressions at solely at run time, it evaluates the code at both run time and at compile
time. At compile time, it builds a parse tree of the required computations. The parse
tree’s type records the types of each of its subtrees. Then, the parse tree is evaluated at
compile time using an evaluator determined by the left-hand side’s type. This container
type determines how to loop through its domain. Each loop iteration of the resulting run
time code, the corresponding value of the right-hand side is evaluated. No intermediate
loops or temporary values are needed.

Before explaining the implementation, let us illustrate using our example statementA
+= -A + 2*B . Evaluating the right-hand side creates a parse tree similar to the one
in Figure 7-2. For example, the overloaded unary minus operator yields a tree node
representing-A , having a unary-minus function object, and having type

Expression<UnaryNode<OpMinus,Ar>>

The binary nodes continue the construction process yielding a parse tree object for the
entire right-hand side and having type

Expression<
BinaryNode<OpAdd,

UnaryNode<OpMinus, Ar>,
BinaryNode<OpMultiply<Scalar<int>,Ar>>>

Evaluating the left-hand side yields an object representingA.
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Figure 7-2. Annotated Parse Tree for-A + 2*B

The parse tree for-A + 2*B with type annotations. The complete type of a node
equals the concatenation of the preorder traversal of annotated types.

Finally, the assignment operator+= calls theevaluate function corresponding to
the left-hand side’s type. At compile time, it produces the code for the computation.
Since this templated function is specialized on the type of the left-hand side, it gener-
ates a loop iterating through the left-hand side’s container. To produce the loop body,
the forEach function produces code for the right-hand side expression at a specific
position using a post-order parse-tree traversal. At a leaf, this evaluation queries the
leaf’s container for a specified value or extracts a scalar value. At an interior node, its
children’s results are combined using its function operator. One loop performs the entire
assignment. It is important to note that the type of the entire right-hand side is known at
compile time. Thus, all of theseevaluate , forEach , and function operator func-
tion calls can be inlined at compile time to yield simple code without any temporary
containers and hopefully as fast as hand-written loops!

To implement this scheme, we need POOMA (really PETE) code to both create the parse
tree and to evaluate it. We describe parse tree creation first. Parse trees consist of leaves,
UnaryNode s, BinaryNode s, andTrinaryNode s. SinceTrinaryNode s
are similar toBinaryNode s, we omit describing them. ABinaryNode ’s three
template parameters correspond to the three things it must store:

Op

the type of the node’s operation. For example, theOpAdd type represents adding
two operands together.

Left

the type of the left child.
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Right

the type of the right child.

The node stores the left and right children’s nodes.

BinaryNode does not need to store any representation of the node’s operation.
Instead theOp type is an empty structure defining a function object. For example,
OpAdd’s function object is declared as

template<class T1, class T2>
inline typename BinaryReturn<T1, T2, OpAdd>::Type_t
operator()(const T1 &a, const T2 &b) const
{

return (a + b);
}

Since it has two template arguments, it can be applied to operands of any type.
Because of C++ type conversions, the type of the result is determined using the
BinaryReturn traits class. Consider adding anint and adouble . Bina-
ryReturn<int, double, OpAdd>::Type_t equalsdouble . Inlining
the function ensures all this syntax is eliminated, leaving behind just an addition.

UnaryNode s are similar but have only two template parameters and store only one
child.

Parse tree leaves are created by theCreateLeaf class and its specializations. The
default leaf is a scalar so it has the most general definition:

template<class T>
struct CreateLeaf
{

typedef Scalar<T> Leaf_t;

inline static
Leaf_t make(const T &a)
{

return Scalar<T>(a);
}

};
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The Scalar class stores the scalar value. TheCreateLeaf ’s Leaf_t type in-
dicates its type. Thestatic make function is invoked by an overloaded operator
function when creating its children.

TheCreateLeaf class is specialized forArray s:

template<int Dim, class T, class EngineTag>
struct CreateLeaf<Array<Dim, T, EngineTag> >
{

typedef Array<Dim, T, EngineTag> Input_t;
typedef Reference<Input_t> Leaf_t;
typedef Leaf_t Return_t;
inline static
Return_t make(const Input_t &a)

{
return Leaf_t(a);

}
};

TheArray object is stored as aReference , rather than directly as for scalars.

To simplify the next step of overloading arithmetic operators, a parse tree’s topmost type
is anExpression .

Now that we have defined the node classes, the C++ arithmetic operators must be
overloaded to return the appropriate parse tree. For example, the unary minus oper-
ator operator- is overloaded to accept anArray argument. It should create a
UnaryNode having anArray as its child, which will be a leaf:

template<int D1,class T1,class E1>
inline typename MakeReturn<UnaryNode<OpUnaryMinus,

typename CreateLeaf<Array<D1,T1,E1>>::Leaf_t>>::
Expression_t

operator-(const Array<D1,T1,E1> & l)
{

typedef UnaryNode<OpUnaryMinus,
typename CreateLeaf<Array<D1,T1,E1> >::Leaf_t> Tree_t;

return MakeReturn<Tree_t>::make(Tree_t(
CreateLeaf<Array<D1,T1,E1> >::make(l)));

}
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Tree_t specifies the node’s unique type. Constructing the object first involves creating
a leaf containing theArray reference through the call to

CreateLeaf<Array<D1,T1,E1> >::make

The call toMakeReturn<Tree_t>::make permits programmers to store trees
in different formats. The POOMA implementation stores them asExpression s. The
function’s return type is similar to thereturn statement except it extracts the type
from Expression ’s internalExpression_t type.

Specializing all the operators forArray s using such complicated functions is likely to
be error-prone so PETE provides a way to automate their creation. Using itsMakeOp-
erators command with this input:

classes
-----

ARG = "int D[n],class T[n],class E[n]"
CLASS = "Array<D[n],T[n],E[n]>"

automatically generates code for all the needed operators. The “[n]” strings are used to
number arguments for binary and ternary operators.

Assignment operators must also be specialized forArray . Inside theArray class
definition, each such operator just invokes theassign function with a corresponding
function object. For example,operator+= invokesassign(*this, rhs,
OpAddAssign()) . rhs is the parse tree object for the right-hand side. Calling
this function invokesevaluate , which begins the evaluation.

Before we explain the evaluation, let us summarize the effect of the code so far de-
scribed. If we are considering run time evaluation, parse trees for the left-hand and
right-hand sides have been constructed. If we are considering compile time evaluation,
the types of these parse trees are known. At compile time, theevaluate function
described below will generate a loop iterating through the left-hand side container’s do-
main. The loop’s body will have code computing a container’s value. At run time, this
code will read values from containers, but the run-time parse tree object itself will not
traversed!

We now explore the evaluation, concentrating on compile time, not run time.eval-
uate is an overloaded function specialized on the type of the left-hand side. In our
example, the left-hand side is a one-dimensionalArray , so evaluate(const
Ar& a, const Op& op, const RHS& rhs) is inlined into a loop like
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int end = a’s domain[0].first() + a’s domain[0].length();
for (int i = a’s domain[0].first(); i < end; ++i)

op(a(i), rhs.read(i));

a is the array,op is a function object representing the assignment operation, andrhs
is the right-hand side’s parse tree.

Evaluatingrhs.read(i) inlines into a call to theforEach function. This func-
tion performs acompile-timepost-order parse-tree traversal. Its general form is

forEach(const Expression& e, const LeafTag& f,
const CombineTag& c).

That is, it traverses the nodes of theExpression objecte. At leaves, it applies the
operation specified byLeafTag f . At interior nodes, it combines the results using the
CombineTag operatorc . It inlines into a call to

ForEach<Expression, LeafTag, CombineTag>::apply(e, f, c)

Theapply function continues the traversal through the tree. For our example,Leaf-
Tag equalsEvalLeaf<1> , andCombineTag equalsOpCombine. The former
indicates that, when reaching a leaf, the leaf should be a one-dimensional container
which should be evaluated at the position stored in theEvalLeaf object. TheOp-
Combine class applies an interior node’sOp to the results of its children.

ForEach structures are specialized for the various node types. For example, the spe-
cialization forUnaryNode is

template<class Op, class A, class FTag, class CTag>
struct ForEach<UnaryNode<Op, A>, FTag, CTag>
{

typedef typename ForEach<A,FTag,CTag>::Type_t TypeA_t;
typedef typename

Combine1<TypeA_t,Op,CTag>::Type_t Type_t;
inline static
Type_t apply(const UnaryNode<Op,A>&expr,const FTag&f,

const CTag& c)
{

return Combine1<TypeA_t, Op, CTag>::
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combine(ForEach<A, FTag, CTag>::
apply(expr.child(), f, c), c);

}
};

Since this structure is specialized forUnaryNode s, the first parameter of itsstatic
apply function is aUnaryNode . After recursively calling its child, it invokes the
combination function indicated by theCombine1 traits class. In our example, thec
function object should be applied. Other combiners have different roles. For example,
using theNullCombine tag indicates the child’s result should not be combined but
occurs just for side effects.

Leaves are treated as the default behavior so they are not specialized:

template<class Expr, class FTag, class CTag>
struct ForEach
{

typedef typename
LeafFunctor<Expr, FTag>::Type_t Type_t;

inline static
Type_t apply(const Expr&expr,const FTag&f,const CTag&)
{

return LeafFunctor<Expr, FTag>::apply(expr, f);
}

};

Thus,LeafFunctor ’s apply member is called.Expr represents the expression
type, e.g., anArray , andFTag is theLeafTag , e.g.,EvalLeaf . TheLeaf-
Functor specialization forArray passes the index stored by theEvalLeaf object
to theArray ’s engine, which returns the corresponding value.

If one uses an aggressive optimizing compiler, code resulting from theevaluate
function corresponds to this pseudocode:

int end = A.domain[0].first() + A.domain[0].length();
for (int i = A.domain[0].first(); i < end; ++i)

A.engine(i) += -A.engine.read(i)+2*B.engine.read(i);

The loop iterates throughA’s domain, usingArray ’s engines to obtain values and as-
signing values. Notice there is no use of the run-time parse tree so the optimizer can
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eliminate the code to construct it. All the work to construct the parse tree by overload-
ing operators is unimportant at run time, but it certainly helped the compiler produce
improved code.

PETE’s expression template technology may be complicated, using parse trees and their
types, but the produced code is not. Using the technology is also easy. All data-parallel
statements are automatically converted. In the next chapter, we explore views of con-
tainers, permitting use of container subsets and making data-parallel expressions even
more useful.
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A view of a containeris a container accessing a subset of C’s domain and values. The
subset can include all of the container’s domain. A “view” is so named because it is a
different way to access, or view, another container’s values. Both the container and its
view share the same underlying engine so changing values in one also changes them in
the other.

A view is created by following a container’s name by parentheses containing a domain.
For example, consider this code extracted from Example 3-3 in Section 3.4.

Interval<1> N(0, n-1);
Interval<2> vertDomain(N, N);
Interval<1> I(1,n-2);
Interval<1> J(1,n-2);
Array<2, double, Brick> a(vertDomain);
Array<2, double, Brick> b(vertDomain);
a(I,J) = (1.0/9.0) *

(b(I+1,J+1) + b(I+1,J ) + b(I+1,J-1) +
b(I ,J+1) + b(I ,J ) + b(I ,J-1) +
b(I-1,J+1) + b(I-1,J ) + b(I-1,J-1));

The last statement creates ten views. For example,a(I,J) creates a view ofa using
the smaller domain specified byI andJ . This omits the outermost rows of columns ofa.
The views ofb illustrate the use of views in data-parallel statements.b(I-1,J-1)
has a subset shifted up one row and left one column compared withb(I,J) .
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Appendix A. Obtaining and Installing
POOMA

In Section 3.1, we described how to install POOMA. In the following section, we de-
scribe how to install POOMA to support distributed computation.

A.1. Supporting Distributed Computation
To use multiple processors with POOMA requires installing the Cheetah messaging li-
brary and an underlying messaging library such as the Message Passing Interface (MPI)
Communications Library or the MM Shared Memory Library. In the following section,
we first describe how to install MM. Read it only if using MM, not MPI. Then we de-
scribe how to install Cheetah and configure POOMA to use it.

A.1.1. Obtaining and Installing the MM Shared Memory
Library

Cheetah, and thus POOMA, can use Ralf Engelschall’s MM Shared Memory Li-
brary to pass messages between processors. For example, the author uses this library
on a two-processor computer running Linux. The library, available athttp://www.

engelschall.com/sw/mm/, is available at no cost and has been successfully tested on
a variety of Unix-like platforms.

We describe how to download and install the MM library.

1. Download the library from the POOMA Download page
(http://pooma.codesourcery.com/pooma/download) available off the
POOMA home page (http://www.codesourcery.com/pooma/pooma/).

2. Extract the source code usingtar xzvf mm-1.1.3.tar.gz . Change di-
rectories into the resulting source code directorymm-1.1.3.

3. Prepare to compile the source code by configuring it using theconfigure
command. To change the default installation directory/usr/local, specify --
prefix= directory option. The other configuration options can be listed
by specifying the--help option. Since the author prefers to keep all POOMA-
related code in hispoomasubdirectory, he uses
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./configure --prefix=${HOME}/pooma/mm-1.1.3

4. Create the library by issuing themake command. This compiles the source code
using a C compiler. To use a different compiler than the MM configuration chooses,
set theCCenvironment variable to the desired compiler before configuring.

5. Optionally test the library by issuing themake test command. If success-
ful, the penultimate line should beOK - ALL TESTS SUCCESSFULLY
PASSED.

6. Install the MM Library by issuing themake install command. This copies
the library files to the installation directory. Themm-1.1.3 directory containing the
source code may now be removed.

A.1.2. Obtaining and Installing the Cheetah Messaging
Library

The Cheetah Library decouples communication from synchronization. Using asyn-
chronous messaging rather than synchronous messaging permits a message sender to
operate without the cooperation of the message recipient. Thus, implementing message
sending is simpler and processing is more efficiently overlapped with it. Remote method
invocation is also supported. The library was developed at the Los Alamos National
Laboratory’s Advanced Computing Laboratory.

Cheetah’s messaging is implemented using an underlying messaging library such as the
Message Passing Interface (MPI) Communications Library or the MM Shared Memory
Library. MPI works on a wide variety of platforms and has achieved widespread usage.
MM works under Unix-like operating systems on any computer with shared memory.
Both libraries are available at no cost. The instructions below work for whichever library
you choose.

We describe how to download and install Cheetah.

1. Download the library from the POOMA Download page
(http://pooma.codesourcery.com/pooma/download) available off the
POOMA home page (http://www.codesourcery.com/pooma/pooma/).

2. Extract the source code usingtar xzvf cheetah-1.0.tgz . Change di-
rectories into the resulting source code directorycheetah-1.0.

3. Edit a configuration file corresponding to your operating system and compiler.
These.conf files are located in theconfig directory. For example, to use g++
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with the Linux operating system, useconfig/LINUXGCC.conf.

The configuration file usually does not need modification. However, if you are us-
ing MM, ensureshmem_default_dir specifies its location. For example, the
author modified the value to"/home/oldham/pooma/mm-1.1.3" .

4. Prepare to compile the source code by configuring it using theconfigure com-
mand. Specify the configuration file using the--arch option. Its argument should
be the configuration file’s name, omitting its.conf suffix. For example,--arch
LINUXGCC. Some other options include

--help
lists all the available options

--shmem --nompi
indicates use of MM, not MPI

--mpi --noshmem
indicates use of MPI, not MM

--opt
causes the compiler to produce optimized source code

--noex
prevents use of C++ exceptions

--static
creates a static library, not a shared library

--shared
creates a shared library, not a static library. This is the default.

--prefixdirectory
specifies the installation directory where the library will be copied rather than
the default.

For example, the author uses

./configure --arch LINUXGCC --shmem --nompi
--noex --static --prefix ${HOME}/pooma/cheetah-1.0
--opt
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The--arch LINUXGCC indicates use of g++ under a Linux operating system.
The MM library is used, but C++ exceptions are not. The latter choice matches
POOMA’s default choice. A static library, not a shared library, is created. This is
also POOMA’s default choice. The library will be installed in the${HOME}/pooma/

cheetah-1.0. Finally, the library code will be optimized, hopefully running faster
than unoptimized code.

5. Follow the directions printed byconfigure : Change directories to thelib sub-
directory named by the--arch argument and then typemake to compile the
source code and create the library.

6. Optionally ensure the library works correctly by issuing themake tests com-
mand.

7. Install the library by issuing themake install command. This copies the li-
brary files to the installation directory. Thecheetah-1.0 directory containing the
source code may now be removed.

A.1.3. Configuring POOMA When Using Cheetah
To use POOMA with Cheetah, one must tell POOMA the location of the Cheetah library
using the--messaging configuration option. To do this,

1. Set the Cheetah directory environment variableCHEETAHDIRto the directory
containing the installed Cheetah library. For example,

declare -x CHEETAHDIR=${HOME}/pooma/cheetah-1.0

specifies the installation directory used in the previous section. If using the csh shell,
usesetenv CHEETAHDIR ${HOME}/pooma/cheetah-1.0 .

2. When configuring POOMA, specify the--messaging option. For example,
./configure --arch LINUXgcc --opt --messaging config-
ures for Linux, g++, and an optimized library using Cheetah.
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A
architecture

particular hardware (processor) interface. Examples architectures include “linux”,
“sgin32”, “sgi64”, and “sun”.

Array

a POOMA container generalizing C arrays and mapping indices to values.
Constant-time access to values is supported, ignoring the time to compute the
values if applicable.Array s are first-class objects.DynamicArray s and
Field s generalizeArray .

See Also:container, DynamicArray , Field .

B
Brick Engine

anEngine explicitly storing each of its values. Its space requirements are at least
the size of theEngine ’s domain.

See Also:engine.

C
cell

a domain element of aField . Both Array andField domain elements are
denoted by indices, but a cell exists in space. For example, it might be a rectangle
or rectangular parallelepiped.

See Also:cell size, Field , mesh.
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cell size

specifies aField cell’s dimensions e.g., its width, height, and depth, inRd. This
is frequently used to specify a mesh.

See Also:cell, mesh, corner position.

communication library

software library passing information amongcontexts, usually using messages.

See Also:distributed computing environment.

compilation time

See:compile time

compile time

in the process from writing a program to executing it, the time when the program
is compiled by a compiler. This is also calledcompilation time.

See Also:programming time, run time.

computing environment

computer. More precisely, a computer with its arrangement of processors and asso-
ciated memory, possibly shared among processors.

See Also:sequential computing environment, distributed computing environment.

conformable containers

containers with conformable domains.

See Also:conformable domains, data parallel.

conformable domains

domains with the “same shape” so that corresponding dimensions have the same
number of elements. Scalars, deemed conformable with any domain, get “ex-
panded” to the domain’s shape. Assignment can operate on containers with con-
formable domains.

See Also:conformable containers, data parallel.
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container

an object that stores other objects, controlling their allocation, deallocation, and ac-
cess. Similar to C++ containers, the most important POOMA containers areAr-
ray s andField s.

See Also:Array , DynamicArray , Field , Tensor , TinyMatrix ,
Vector .

container value

object stored within a container and usually addressable via an index. Synonyms
include “element” and “value”.

context

a collection of shared memory and processors that can execute a program or a por-
tion of a program. It can have one or more processors, but all these processors must
access the same shared memory. Usually the computer and its operating system,
not the programmer, determine the available contexts.

See Also:distributed computing environment, layout.

context mapper

indicates how a container’s patches are mapped to processors and shared memory.
Two common choices are distribution among the various processors and replica-
tion.

See Also:context, patch.

corner position

specifies theRd point corresponding to aField domain’s lower, left corner.

See Also:mesh, cell size.

D
data parallel

describes an expression involving a (non-singleton) subset of a container’s values.
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For example,sin(C) is an expression indicating that thesin is applied to each
value in container C.

See Also:element wise, relation, stencil.

distributed computing environment

computing environment with one or more processors each having associated mem-
ory, possibly shared. In some contexts, it refers to strictly multiprocessor computa-
tion.

See Also:computing environment, sequential computing environment.

domain

a set of points on which a container can define values. For example, a set of discrete
integral n-tuples in n-dimensional space frequently serve as container domains.

See Also:container, interval, stride, range.

domain triplet notation

notation [begin :end :stride ] representing the mathematical set {begin, begin
+ stride, begin + 2stride, . . . , end}.end is in the set only if it equalsbegin plus
some integral multiple ofstride . This notation can abbreviate many domains.
It is extended to multiple dimensions by separating the dimensions’ sets with com-
mas: [begin0 :end0 :stride0 ,begin1 :end1 :stride1 ].

See Also:domain.

DynamicArray

a POOMA container generalizing one-dimensionalArray s by supporting domain
resizing at run-time. It maps indices to values in constant time, ignoring the time to
compute the values if applicable.DynamicArray s are first-class objects.

See Also:container, Array , Field .

E
element

See:container value

144



Glossary

element wise

describes accesses to individual values within a container. For example,C(-4,3)
represents one particular value in the container C.

See Also:data parallel, relation, stencil.

engine

stores or computes a container’s values. These can be specialized, e.g., to mini-
mize storage when a domain has few distinct values. Separating a container and its
storage also permits views of a container.

See Also:Brick Engine , container, view of a container.

enumeration

C++ integral type with named constants. These are frequently used in template
programming because they can be used as template arguments.

execution time

See:run time

external guard layer

guard layer surrounding a container’s domain used to ease computation along the
domain’s edges by permitting the same computations as for more internal compu-
tations. It is an optimization, not required for program correctness.

See Also:guard layer, internal guard layer, patch.

F
Field

a POOMA container representing anArray with spatial extent. It also supports
multiple values and multiple materials having the same index. It maps indices to
values in constant time, ignoring the time to compute the values if applicable. It
also supports geometric computations such as the distance between two cells and
normals to a cell.Field s are first-class objects.

See Also:container, cell, mesh, Array , DynamicArray .
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first-class type

a type of object with all the capabilities of the built-in type having the most capabil-
ities. For example,char andint are first-class types in C++ because they may be
declared anywhere, stored in automatic variables, accessed anywhere, copied, and
passed by both value and reference. POOMAArray andField are first-class
types.

function object

object that can behave as a function. The object can store values that the function
uses. If its function is calledoperator() , the object can be invoked as a func-
tion.

function template

a definition of an unbounded set of related functions, all having the same name but
whose types can depend on template parameters. They are particularly useful when
overloading operator functions to accept parameters that themselves depend on
templates.

G
guard layer

domain surrounding each patch of a container’s domain. It contains read-only val-
ues. External guard layers ease programming, while internal guard layers per-
mit each patch’s computation to be occur without copying values from adjacent
patches. They are optimizations, not required for program correctness.

See Also:external guard layer, internal guard layer, partition, patch, domain.
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I
index

a position in a domain usually denoted by an ordered tuple. More than one index
are called indices.

See Also:domain.

instantiation

See:template instantiation

indices

More than one index.

See Also:index.

internal guard layer

guard layer containing copies of adjacent patches’ values. These copies can per-
mit an individual patch’s computation to occur without asking adjacent patches for
values. This can speed computation but are not required for program correctness.

See Also:guard layer, external guard layer, patch.

interval

a set of integral points between two endpoints. This domain is frequently repre-
sented using mathematical interval notation [a,b] even though it contains only the
integral points, e.g., a, a+1, a+2, . . . , b. It is also generalized to an n-dimensional in-
terval as the direct product of one-dimensional intervals. Many containers’ domains
consist of these sets of ordered tuples.

See Also:domain, stride, range.

L
layout

a map from an index to processor(s) and memory used to compute the container’s
associated value. For a uniprocessor implementation, a container’s layout always
consists of its domain, the processor, and its memory. For a multiprocessor imple-
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mentation, the layout maps portions of the domain to (possibly different) processors
and memory.

See Also:container, domain.

M
matrix

See:TinyMatrix

mesh

a Field ’s map from indices to geometric values such as cell size, edge length,
and cell normals. In other words, it specifies aField ’s “spatial extent”.

See Also:Field , cell, cell size, corner position, layout.

O
operator function

function defining a function invoked using a C++ operator. For example, theop-
erator+ function defines the result of using the+.

P
partition

a specification how to divide a container’s domain into patches for distributed com-
putation. It can be independent of the domain’s size. For example, it divide each
domain into halves, yielding a total of eight patches in three dimensions. See Fig-
ure 3-4 for an illustration.

See Also:guard layer, patch, domain.
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patch

subset of a container’s domain with values computed by a particular context. A
partition splits a domain into patches. It may be surrounded by external and internal
guard layers.

See Also:partition, guard layer, domain.

point

a location in multidimensional spaceRd. In contrast, indices specify positions in
container domains.

See Also:Field , mesh, index.

programming time

in the process from writing a program to executing it, the time when the program
is being written by a programmer.

See Also:compile time, run time.

R
range

a set of integral points between two endpoints and separated by a stride. This do-
main, frequently represented by domain triplets [b:e:s], can also be represented
mathematically as an integral interval [b,e] with stride s, i.e., {a, a+s, a+2s, . . . , b}.
It is generalized to an n-dimensional range as the direct product of one-dimensional
ranges.

See Also:stride, interval, domain.

reference semantics

a copy of an objecto refers to the objecto such that changing either one also
changes the other. This is the opposite of value semantics.

relation

dependence between a dependent container and one or more independent contain-
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ers and an associated function. If a dependent container’s values are needed and
one or more of the independent containers’ values have changed, the dependent
container’s values are computed using the function and the independent contain-
ers’ values. Relations implement “lazy evaluation”.

See Also:data parallel, element wise, stencil.

run time

in the process from writing a program to executing it, the time when the program
is executed. This is also calledexecution time.

See Also:compile time, programming time.

S
sequential computing environment

a computing environment with one processor and associated memory. Only one
processor executes a program even if the computer itself has multiple processors.

See Also:computing environment, distributed computing environment.

stencil

set of values neighboring a container index and a function using those values to
compute it. For example, the stencil in a two-dimensional Conway game of life
consists of an index’s eight neighbors and a function that sets its value to “live” if
it is already live and it has two neighbors or it has exactly three live neighbors.

See Also:data parallel, element wise, relation.

stride

spacing between regularly-spaced points in a domain. For example, the set of points
a, a+2, a+4, . . . , b-2, b is specified by [a,b] with stride 2. It is a domain.

See Also:range, interval, domain.

suite name

an arbitrary string denoting a particular toolkit configuration. For example, the
string “SUNKCC-debug” might indicate a configuration for the Sun™ Solaris op-
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erating system and the KCC C++ compiler with debugging support. By default, the
suite name it is equal to the configuration’s architecture name.

T
template

class or function definition having template parameters. These parameters’ values
are used at compile time, not run time, so they may include types and other compile-
time values.

See Also:template instantiation, template specialization.

template instantiation

applying a template class to template parameter arguments to create a type. For ex-
ample,foo<double,3> instantiatestemplate <typename T, int
n> class foo with the typedouble and the constant integer 3. Template
instantiation is analogous to applying a function to function arguments.

See Also:template.

template specialization

class or function definition for a particular (special) subset of template arguments.

See Also:template.

Tensor

a POOMA container implementing multidimensional mathematical tensors as first-
class objects.

See Also:TinyMatrix , Vector .

TinyMatrix

a POOMA container implementing two-dimensional mathematical matrices as
first-class objects.

See Also:Tensor , Vector .
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trait

a characteristic of a type.

See Also:traits class.

traits class

a class containing one or more traits all describing a particular type’s characteris-
tics.

See Also:trait.

Turing complete

describes a language that can compute anything that can be computed. That is, the
language for computation is as powerful as it can be. Most wide-spread program-
ming languages are Turing-complete, including C++, C, and Fortran.

V
value

See:container value

Vector

a POOMA container implementing multidimensional mathematical vectors, i.e., an
ordered tuple of components, as first-class objects.

See Also:Tensor , TinyMatrix .

view of a container

a container derived from another. The view’s domain is a subset of the latter’s,
but, where the domains intersect, accessing a value through the view is the same
as accessing it through the original container. In Fortran 90, these are called array
sections. OnlyArray s,DynamicArray s, andField s support views.

See Also:container.
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