
SCHEME-GNUNET
MANUAL

MAXIME DEVOS

Email: mmmmmmmmmaaaaaaaaaxxxxxxxxxiiiiiiiiimmmmmmmmmeeeeeeeeedddddddddeeeeeeeeevvvvvvvvvooooooooosssssssss@@@@@@@@@ttttttttteeeeeeeeellllllllleeeeeeeeennnnnnnnneeeeeeeeettttttttt.........bbbbbbbbbeeeeeeeee

Copyright (C) 2021 Maxime Devos

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no
Back-Cover Texts. A copy of the license is included in the section entitled ‘GNU Free
Documentation License’.

INDEX 3

CHAPTER 1
INSTALLATION AND CONTRIBUTING GUIDE

1.1. Building from source

The latest ‘official’ development version of scheme-GNUnet can be found at https://not-
abug.org/maximed/scheme-gnunet. It can be downloaded with git. The following soft-
ware needs to be installed first:

• The Autotools (autoconf and automake)

• GNU Guile (at least version 3)

• Purely Functional Data Structures in Scheme (pfds)

• (Guile) Fibers

• Guile-QuickCheck

For the benefit of dead tree readers, the invisible hyperlinks above are reproduced as
visible URLs below.

• https://www.gnu.org/software/autoconf/

• https://www.gnu.org/software/guile/

• https://github.com/ijp/pfds/

• https://github.com/wingo/fibers/

• https://ngyro.com/software/guile-quickcheck.html

A few patches to guile and guile-fibers are required (some bug fixes, some extra func-
tionality), see guix.scm.

Users of GNU Guix can run guix environment -l guix.scm in the checkout to create
an environment where these dependencies are all present. Scheme-GNUnet uses the
standard GNU build system, so to build Scheme-Gnunet, you only need to run

autoreconf -vif
./configure
make
make check

After building, the documentation is available at doc/scheme-gnunet.pdf and doc/
scheme-gnunet.html in PDF and HTML formats. To get started, you can run the
example mini-application at examples/nse-web.scm and point your browser at
http://localhost:8089:

5

$ guile -L . -C . -l examples/nse-web.scm

1.1.1. Authenticating new source code

When GNU Guix is present, after pulling the latest Scheme-GNUnet commit, the fol-
lowing command can be run to verify it is authentic:

guix git authenticate 431f336edd51e1f0fe059a6f6f2d4c3e9267b7bc "C1F3
3EE2 0C52 8FDB 7DD7 011F 49E3 EE22 1917 25EE"

If it isn't authentic, an error message such as the following will be written:

Authenticating commits 54a74dc to 431f336 (1 new commits)...
[###]
guix git: error: commit 431f336edd51e1f0fe059a6f6f2d4c3e9267b7bc
not signed by an authorized key: C1F3 3EE2 0C52 8FDB 7DD7 011F 49E3
EE22 1917 25EE

1.2. Writing tests

‘How SQLite Is Tested’ is a recommended read. Scheme-GNUnet isn't that well-tested
but still aims for being free of bugs and having many tests to prevents bugs from being
introduced. When adding new code, consider writing test cases. Some things that can
be tested and few methods for testing things:

• Run mutation tests. That is, replace in the source code < with <=, 0 with 1, a
variable reference iwith a variable reference j, swap destination and source argu-
ments .. . and verify whether the tests detect these little mutations.

• Be exhaustive. If a procedure handles both foos and bars, write test cases that
pass the procedure a foo and test cases that pass the procedure a bar. Sometimes
Guile-QuickCheck can help with generating many test cases if the input has a
regular structure yet many edge cases, see e.g. tests/cmsg.scm.

• Verify exception mechanisms! If a procedure is expected to handle I/O errors,
simulate I/O errors and end-of-files in all the wrong places. If the procedure can
raise exceptions, make sure these exceptions are raised when necessary.

Tests are added in the directory tests and to the variable SCM_TESTS in Makefile.am
and use srfi :64. To run the test suite, run make check.

1.3. Contact

Scheme-GNUnet is currently maintained on NotABug: https://notabug.org/
maximed/scheme-gnunet/. Issues and pull requests can be reported and submitted
here. Alternatively, for discussion about developing Scheme-GNUnet, you can send
mails to gnunet-devel@gnu.org and for help about how to use Scheme-GNUnet, you
can contact help-gnunet@gnu.org. These are public mailing lists, so don't send any-
thing there you wouldn't mind the whole world to know.

6 INSTALLATION AND CONTRIBUTING GUIDE

[TODO: verify C GNUnet people are ok with this?]

For security-sensitive issues, you can send a mail directly to the maintainer, Maxime
Devos <maximedevos@telenet.be>, optionally encrypted and signed with a GnuPG-
compatible system. The maintainer's key fingerprint is C1F3 3EE2 0C52 8FDB 7DD7
011F 49E3 EE22 1917 25EE and a copy of the key can be downloaded from https://
notabug.org/maximed/things/raw/master/Maxime_Devos.pub.

1.4. License

The code of Scheme-GNUnet is available under the Affero General Public License (AGPL),
version 3 or later; see individual source files for details. The documentaton is avail-
able under the GNU Free Documentation License, see the start of this manual and the
likewise-named appendix for details. The AGPL has some unusual conditions w.r.t.
applications interacting with the network, please read it carefully.

1.4 LICENSE 7

CHAPTER 2
APPLICATION GUIDE

Scheme-GNUnet doesn't have any example applications, except the half-baked
examples/nse-web.scm, gnu/gnunet/scripts/download-store.scm and gnu/
gnunet/scripts/publish-store.scm. Over time, we hope we have something to
write here, but for now, this chapter is empty.

9

CHAPTER 3
PROGRAMMING GUIDE

3.1. Concurrency

Scheme-GNUnet uses guile-fibers for concurrency, but supports POSIX-style
threading as well, using the (ice-9 threads) Guile module. More concretely, this
means spawn-fiber is used by default for starting asynchronuous computations and
public procedures accept an optional #:spawn argument accepting a procedure like
spawn-fiber or call-with-new-thread. ‘Conditions’ can be used for synchronising
concurrent computations, see the documentation of guile-fibers for details.

Repeated conditions Scheme-GNUnet has a variant of fibers conditions, named ‘repeated
conditions’, in the module (gnu gnunet concurrency repeated-condition). It is
unfortunately ill-documented.

3.2. Configuration

There are a number of modules for accessing GNUnet configurations. Firstly,
there is (gnu gnunet config db), which is the module library code would typ-
ically use. For testing, one can create an empty configuration with the procedure
hash->configuration from that module and make-hashtable from (rnrs
hashtables), using hash-key as hash function and key=? as comparison function:

(import (gnu gnunet config db)
(gnu gnunet config value-parser)
(rnrs hashtables))

(define config (hash->configuration (make-hashtable hash-key key=?))

The resulting configuration config is initially empty, so set some keys in the section nse,
to configure the network-size estimation service:

(set-value! identity config "nse" "UNIXPATH" "/tmp/nse.sock")
(set-value! number->string config "cadet" "MAX_ROUTES" 5000)
;; TODO: IP address, time durations, booleans, ...

Now read these values back:

(read-value value->file-name config "nse" "UNIXPATH")
;; -> /tmp/nse.sock
(read-value value->natural config "cadet" "MAX_ROUTES")
;; -> 5000

What if the configuration doesn't have a value for the specified section and key? Then
an &undefined-key-error results:

11

(read-value value->natural config "kated" "MAX_ROUTES")
;; ->
;; ice-9/boot-9.scm:1685:16: In procedure raise-exception:
;; ERROR:
;; 1. &undefined-key-error:
;; section: "kated"
;; key: "MAX_ROUTES"

3.2.1. Locating configuration files

There are two – possibly non-existent – configuration files: the user configuration and
the system configuration. The system configuration typically contains the paths for ser-
vices like NSE, CORE, . . . A user may choose not to use the services by the system
and instead use their own. To do so, the user needs to override the paths in the user
configuration. [defaults?] The module (gnu gnunet config fs) is responsible for
determining the location of the configuration files to load and actually load configuration
files. For determining the location of the configuration files, the procedures locate-
user-configuration and locate-system-configuration can be used.

Warning 3.1. The C implementation's mechanism for user-system separation seems to
work differently.

(locate-user-configuration #:getenv=getenv)

This procedure determines the location of the user configuration file, as a string, or
#false if it could not be determined. If the location of the user configuration file is
known, but the file does not exist, it is returned anyway, as a string.

If the environment variable XDG_CONFIG_HOME is set, the location of the file
gnunet.conf in the directory $XDG_CONFIG_HOME is returned. If the environment
variable is not set, the location of the file at .config/gnunet.conf in the home dir-
ectory specified by the environment variable HOME is returned, if that environment
variable exists. If both are unset, #false is returned.

The values of environment variables is determined with the procedure getenv.

(locate-system-configuration)

This procedure determines the location of the system configuration file, as a string.

Currently, this is always /etc/gnunet.conf.

3.2.2. Loading configuration files

Once the location of the configuration file is known, the file can be opened with the
Scheme procedure open-input-file, which returns an input port. Then the procedure
load-configuration/port! can be used to determine all section-key-values triples
in the configuration.

(load-configuration/port! set-value! port)

Load the configuration from the input port port.

12 PROGRAMMING GUIDE

For each variable, call set-value! with the section name, variable name and a
vector of the form #(line line-number value), where value a list of expansible
objects.
[document expansible objects][error reporting]

A variable assignment [section] key=value${var} can refer to variables defined in
the PATHS section and variables from the environment. The previously described pro-
cedure load-configuration/port! will not expand such assignements. To expand
variable assignments, use the procedure make-expanded-configuration instead.
(make-expanded-configuration load! #:getenv=getenv)

Make a configuration object. To populate the configuration, all the
procedure load! with a set-value! procedure as expected by load-
configuration/port!. The values from set-value! are added to the confoigur-
ation and every variable is expanded.

To automatically load the defaults, the system configuration and the user configuration,
use the thunk load-configuration:
(load-configuration #:getenv=getenv #:files= . . .)

Load the defaults, the system configuration and the user configuration and return the
resulting configuration object. The list of files to load can be overriden by setting the
undocumented files keyword argument.

Applications (whether graphical or textual) are recommended to use load-
configuration by default, as it largely just works.

3.3. Manipulation of network structures
The modules (gnu gnunet netstruct procedural) and (gnu gnunet netstruct
syntactic) can be used for formatting messages to be sent over the network or to a
service. The macros define-type and structure/packed can be used to define new
structures, like this:

(define-type /:msg:nse:estimate/example
(structure/packed
(properties '((message-symbol msg:nse:estimate)))
(synopsis "Network size estimate")
(documentation "Some explanation")
(field (header /:message-header))
(field (size-estimate ieee-double/big)

(synopsis "Timestamp for when the estimate was made"))))

This example is taken from the (gnu gnunet nse struct) module and oversimpli-
fied. All its components will gradually explained. First, what actually is a network
structure? This question is ambigious, because ‘network structure’ can refer to either
the value or the type. The value is a sequence of octets, i.e., a sequence of numbers in the
closed range 0–255. The type describes how the value is structured.
As an example, consider figure ?. There, the value is 0 12 1 65 64 51 238 123 71
27 58 149 and the type is /:msg:nse:estimate/example.

3.3 MANIPULATION OF NETWORK STRUCTURES 13

/:msg:nse:estimate/example

header /:message-header

size u16/big

0 12

type u16/big

1 65

size-estimate ieee-double/big

64 51 238 123 71 27 58 149

Figure 3.1. A network structure, both value and type.

This value has a header with a size ‘0 0 0 12’ of type u32/big, so the size is 12. The header
also has a type ‘0 0 1 65’ of type u32/big, so the type is 256×1+65=321. The value also
has a size estimate of type ieee-double/big. The octets 64 51 238 123 71 27 58
149, interpreted as an IEEE double, form the number 19.93. . ..

3.3.1. Documentation

A network structure can optionally have embedded documentation. More specific-
ally, network structures can optionally have the synopsis, documentation and properties
set. The synopsis is a short description of what the network structure represents, typ-
ically a one-liner. The documentation can be more detailed, explaining how the structure
works, can be used, is used and should be used. The properties form a free-formed asso-
ciation list.
The synopsis, documentation and properties can be set on structured created with
structure/packed and individual fields and can be accessed with the procedures
documentation, synopsis and properties.

3.3.2. Reading and writing

The procedures read%, set%!, sizeof and select from (gnu gnunet netstruct
procedural) or the like-named macros from (gnu gnunet netstruct syntactic)
can be used for reading and writing network structures. The macros from syntactic
behave like the procedures from procedural with some optimisations at expansion
time. The procedures will be demonstrated with the /:msg:nse:estimate/example
network structure defined previously.
First, create a memory slice with make-slice/read-write from (gnu gnunet
utils bv-slice). The required size can be determinded with (sizeof
/:msg:nse:estimate/example '()). The role of '() will be explained later.

(import (gnu gnunet netstruct procedural)
(gnu gnunet netstruct syntactic)
(gnu gnunet utils bv-slice)
(gnu gnunet util struct))

(define-type /:msg:nse:estimate/example
(structure/packed
(field (header /:message-header))
(field (size-estimate ieee-double/big))))

(define message
(make-slice/read-write (sizeof /:msg:nse:estimate/example '())))

14 PROGRAMMING GUIDE

The fields of message can be set with (set%! netstruct '(field ...) slice
value). The following code sets all the fields:

(set%! /:msg:nse:estimate/example '(header size) message
(sizeof /:msg:nse:estimate/example '()))

(set%! /:msg:nse:estimate/example '(header type) message 165)
(set%! /:msg:nse:estimate/example '(size-estimate) message 19.2)

The size of an individual field can be determined with (sizeof netstruct '(field
...)). For example, the following code determines the size of the ‘size’ field in the
header:

(sizeof /:msg:nse:estimate/example '(header size)) ; 12

The fields can also be read:

(read% /:msg:nse:estimate/example '(header size) message) ; 12
(read% /:msg:nse:estimate/example '(header type) message) ; 165
(read% /:msg:nse:estimate/example '(size-estimate) message) ; 19.2

3.3.3. Primitive types

There are a number of pre-defined types. First, there is u8, a single octet that is inter-
preted as an integer in the closed range [0, 255]. There are also types uN/endian for
N ∈ {16, 32, 64} and endian ∈ {little, big}, which interprets N/8 octets as integers in the
closed range [0,2N −1]. The types ieee-double/big and ieee-double/little are 8
octets long and represent floating-point numbers in IEEE 754 format (‘binary64’).

3.3.4. Packing

In contrast to C structures, Scheme-GNUnet network structures are always packed —
there are no ‘gaps’ between fields.

3.4. Communication with services
To connect with a GNUnet service — this applies to both the C and Scheme implement-
ation, the GNUnet service must bind a local domain socket3.1 somewhere on the file
system and the client (possibly another service) must connect to it. Connections to a
service can be made with the connect/fibers procedure from (gnu gnunet mq-impl
stream), like this:

(define mq (connect/fibers config "nse" handlers error-handler))

3.4.1. Asynchronuously connecting

This is an asynchronuous operation: it will ‘complete’ immediately and the connection
will actually be formed in the background. When the connection has actually be formed,
the error-handler is called with the symbol connection:connected. To demon-
strate, the following code asynchronuously connects to the NSE service, and prints the
text "connected!" when the connection has actually been formed.

3.1. The C implementation supports Internet sockets as well.

3.4 COMMUNICATION WITH SERVICES 15

;; XXX test this, explain 'config' ...
(define (error-handler error . args)
(case error
((connection:connected)
(format #t "connected!~%"))
(else (format #t "unknown error: ~a ~a~%" error args))))

(define mq
(connect/fibers config "nse" (message-handlers) error-handler))

3.4.2. Message handler

When a message is received by the message queue, the corresponding message handler
is invoked. Message handlers can be constructed with the message-handler macro
and the make-message-handler procedure from (gnu gnunet nse client), as fol-
lows:

(import (gnu gnunet mq handler)
(gnu extractor enum)
(gnu gnunet message protocols)
(gnu gnunet util struct)
(gnu gnunet utils bv-slice)
(gnu gnunet netstruct syntactic))

(define handler/syntactic
(message-handler
(type (symbol-value message-type msg:util:dummy))
((interpose code) code)
((well-formed? slice)
(= (slice-length slice)

(sizeof /:message-header '())))
((handle! slice)
(pk 'message: slice))))

(define handler/procedural
(make-message-handler
(symbol-value message-type msg:util:dummy)
(lambda (thunk) (thunk))
(lambda (slice)
(= (slice-length slice)

(sizeof /:message-header '())))
(lambda (slice)
(pk 'message: slice))))

As illustrated in the example code above, a message handler has four components: the
type of message it handles, an interposer which will be explained later, the verifier deciding
if a message is well-formed and the handler procedure.

16 PROGRAMMING GUIDE

The verifier is passed a bytevector slice with the message and should return #true if the
message is well-formed and #false if it isn't. It may assume that the length of the slice
corresponds to the length in the message header and is at least the length of the message
header and that the type in the message header corresponds to the type of the message
handler. Messages will only be passed to the handler procedue if the verifiers returns
#true.

The handler procedure is passed a bytevector slice with the message, but only if the
verifier considers it well-formed. The handler procedure and verifier are run from the
interposer. The interposer is passed a thunk to execute and may e.g. install exception
handlers and parameterise parameters. It can change the current input, output and
error ports for example.

[document the message type database, various procedures]

3.4.3. Message type database

The module (gnu gnunet message protocols) has a mapping of symbolic names
of every message type known to scheme-GNUnet to their numeric value. To
use it, the macro symbol-value from (gnu extractor enum) is required and pos-
sibly value->index as well. To determine the numeric value of the message type
msg:nse:estimate, one would write:

(define numeric-type
(value->index (symbol-value message-type msg:nse:estimate)))

[other various enum procedures for introspection, documentation, .. .?]

[how to define new message types]

3.4.4. Error handler

The message queue implementation usually just sends and receives messages, but
some exceptional situations cannot be communicated with send-message! or inject-
message!. For those, there is the inject-error!procedure. This variadic procedure
accepts a message queue to inject the error into, a key (usually a symbol) describing the
exceptional situation and rest arguments. It calls the error handler of the message queue
with the key and rest arguments. The following errors can currently be reported by
the built-in message queue implementations:

connection:connected

The connection to the server has been established.

connection:interrupted

The message queue has been closed before the connection to the server could be estab-
lished.

input:regular-end-of-file

The connection has been closed by the server.

3.4 COMMUNICATION WITH SERVICES 17

For people wondering about what happens if a connection becomes half-duplex:
GNUnet does not have a notion of half-duplex message streams. If it is detected
the underlying stream became half-duplex anyways, it will be treated as closed by
scheme-GNUnet, resulting in this error. However, note that currently broken pipes
cannot be reliably detected.

input:premature-end-of-file

The connection was closed by the server while a message was still being read. This
can happen if the server was stopped while it was still sending the rest of the mes-
sage.

input:overly-small type size

The message size in the header was smaller than the minimal message size. Some-
times, but not always, the message type type and message size size are available
(as exact naturals). When they are not available, type and size are #false
instead. This can only happen if the server or connection to the server is buggy.

logic:no-handler type . rest

The received message of type type (as an integer) does not have a corresponding
message handler. rest is currently unspecified.

logic:ill-formed type . rest

The received message of type (as an integer) is ill-formed according to the message
handler. rest is currently unspecified.

Consider automatically reconnecting after input:regular-end-of-file and
input:premature-end-of-file, to allow the server to restart without having to
manually restart every individual application. To report errors, see the section ? Error
reporting.

3.4.5. Ordering of injected errors and messages and sent messages

This section describes how injected errors and messages and sent messages are ordered
with respect to each other in the default message queue implementation. Messages
are handled or corresponding logic:no-handler or logic:ill-formed errors
are injected in the order that the messages are received. Before messages are read,
connection:connected is injected. This error is injected at most once.

Soon after all messages are read (and therefore soon after all handled messages or cor-
responding errors), the error input:regular-end-of-file, input:overly-small or
input:premature-end-of-file is injected. Only one of those errors can be injected
for the entire lifetime of the message queue.

Be aware that soon is not immediate here! For example, it is possible for a message to be
received, the port closed, a message queued for sending, the closing of the port being
detected by the write fiber, input:regular-end-of-file being injected from the write
fiber and the read fiber handling the received message, and the read fiber exiting because
the port is closed, in that order.

18 PROGRAMMING GUIDE

Messages are sent (and received on the other side) in the order they were enqueued
for sending. Likewise, the notify-sent callback of enqueued messages are called in
order. If the notify-sent callback is called, it is before the message is received by the
other side. The message and its notify-sent callback are only received by the other side
and called after the message has been injected and connection:connected has been
injected. It is possible for the notify-sent callback to be called without the message being
received by the other side, e.g. if the port was closed during the notify-sent callback.
If a message is received by the other side, all previously-sent messages have be received
before. If a notify-sent callback is invoked, all notify-sent callbacks of previous mes-
sages have been invoked before, except the messages that are eventually cancelled.
The errors logic:no-handler and logic:ill-formed are not fatal: later messages can
still be read and handled. If connection:interrupted is injected, no other errors are
ever injected, whether in the past or in the future. This error can only be injected once.
[I/O errors]
[envelopes]

3.4.6. Disconnecting

A message queue can be closed with the close-queue! procedure from (gnu gnunet
mq). In the default message queue implementation, this asynchronuously closes the
port and stops associated fibers. Closing ports when they won't be used anymore
is important for limiting resource consumption, especially for servers that can have
many connections. Closing message queues is an idempotent operation: closing a
message queue twice is the same as closing it once. If a message queue is closed
before a connection could be formed, connection:interrupted is injected instead of
connection:connected and connection:regular-end-of-file.

3.5. Error reporting

Errors can be reported with the procedure report-error from the module (gnu gnunet
mq error-reporting). It can be called as (report-error key argument ...), e.g.
(report-error 'logic:no-handler 3). By default, it reports the error to the cur-
rent error port. If this is not desired, the output can be sent to another port by setting the
parameter textual-error-reporting-port. If textual error reporting is not desired,
the parameter error-reporter can be set to a procedure with the same interface as
report-error. Such a procedure could e.g. open a GUI dialog, sent the message to
the system logger or ignore the error.
Error messages are translated for the current locale.[TODO actually call bindtextdomain]

3.6. Estimation of the size of the network

GNUnet has a service that roughly estimates the size of the network – i.e., the number
of peers. The module (gnu gnunet nse client) can be used to interact with this
service. The connection is made with the procedure connect, which is accepts a con-
figuration (see [reference]) and some optional keyword arguments. This procedure
can be called as (connect config #:updated updated #:connected connected
#:disconnected disconnected). It returns a NSE server object.

3.6 ESTIMATION OF THE SIZE OF THE NETWORK 19

The connection is made asynchronuously; the thunk connected will be called when
the connection has actually been made. Whenever a new estimate becomes available,
the (optional) procedure updated is called with the new estimate. Alternatively, the
procedure estimate can be called on the server object to return the latest available
estimate. If the server object doesn't have an estimate yet, that procedure will return
#false instead of an estimate.

When the connection is lost, the (optional) thunk disconnected is called and (gnu
gnunet nse client) will retry connecting. To close the current connection, if any,
and stop reconnecting, the idempotent procedure disconnect! can be called on the
server object.

[input, validation, I/O errors?]

The estimate object has a number of accessors:

(estimate:logarithmic-number-peers estimate)

The base-2 logarithm of the number of peers (estimated), as a positive flonum, pos-
sibly zero or infinite

(estimate:number-peers estimate)

The number of peers (estimated), as a flonum, at least 1.0 and possibly infinite. This
is not necessarily an (inexact) integer?, as it is only an estimate.

(estimate:timestamp estimate)

A timestamp when the estimate was made [something about epoch?]

(estimate:standard-deviation estimate)

The estimated standard deviation on the base-2 logarithm of peers, calculated over
the last 64 rounds, with the N

N −1 correction. This is a positive flonum, possibly zero
or infinite.

Assuming the network size is stable and the errors on the logarithmic estimate are nor-
mally distributed, the procedure estimate:standard-deviation can be used to put
probablistic error bounds on the number of peers on the network. [example]

20 PROGRAMMING GUIDE

CHAPTER 4
IMPLEMENTATION DETAILS

21

TODO

APPENDIX A

GNU FREE DOCUMENTATION LICENSE

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<https://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to
copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use
that work under the conditions stated herein. The “Document”, below, refers to any
such manual or work. Any member of the public is a licensee, and is addressed as “you”.
You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

23

https://fsf.org/

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this
License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at
most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or dis-
courage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not “Transparent”
is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modi-
fication. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary
word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by
some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

24 GNU FREE DOCUMENTATION LICENSE

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as“`Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or
distribute. However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distribu-
tion of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

3. COPYING IN QUANTITY 25

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with
an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the condi-
tions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A) Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission.

B) List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D) Preserve all the copyright notices of the Document.

E) Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F) Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

H) Include an unaltered copy of this License.

I) Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

26 GNU FREE DOCUMENTATION LICENSE

K) For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

L) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M) Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N) Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O) Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version's license notice. These titles must be
distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Ver-
sion. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

5. COMBINING DOCUMENTS 27

In the combination, you must combine any sections Entitled “History” in the various ori-
ginal documents, forming one section Entitled “History”; likewise combine any sections
Entitled “Acknowledgement”, and any sections Entitled “Dedications”. You must delete
all sections Entitled “Endorsement”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document's Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original ver-
sion of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

28 GNU FREE DOCUMENTATION LICENSE

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
https://www.gnu.org/licenses/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Soft-
ware Foundation. If the Document does not specify a version number of this License,
you may choose any version ever published (not as a draft) by the Free Software Found-
ation. If the Document specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a version perman-
ently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for any-
body to edit those works. A public wiki that anybody can edit is an example of such a
server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place
of business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

11. RELICENSING 29

https://www.gnu.org/licenses/

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing'' if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and sub-
sequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this

document
under the terms of the GNU Free Documentation License, Version

1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-

Cover Texts.
A copy of the license is included in the section entitled ``GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with … Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being

LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

30 GNU FREE DOCUMENTATION LICENSE

INDEX

define-type . ?
documentation ?
error reporting ?
make-message-handler ?
message handler ?
message-handler ?
netstruct . ?
network size estimation ?
network structure ?

properties . ?
read% . ?
select . ?
set%! . ?
sizeof . ?
structure/packed ?
synopsis . ?
tests . ?

31

	1. Installation and contributing guide
	1.1. Building from source
	1.1.1. Authenticating new source code

	1.2. Writing tests
	1.3. Contact
	1.4. License

	2. Application guide
	3. Programming guide
	3.1. Concurrency
	Repeated conditions

	3.2. Configuration
	3.2.1. Locating configuration files
	3.2.2. Loading configuration files

	3.3. Manipulation of network structures
	3.3.1. Documentation
	3.3.2. Reading and writing
	3.3.3. Primitive types
	3.3.4. Packing

	3.4. Communication with services
	3.4.1. Asynchronuously connecting
	3.4.2. Message handler
	3.4.3. Message type database
	3.4.4. Error handler
	3.4.5. Ordering of injected errors and messages and sent messages
	3.4.6. Disconnecting

	3.5. Error reporting
	3.6. Estimation of the size of the network

	4. Implementation details
	Appendix A. GNU Free Documentation License
	0. Preamble
	1. Applicability and definitions
	2. Verbatim copying
	3. Copying in quantity
	4. Modifications
	5. Combining documents
	6. Collections of documents
	7. Aggregation with independent works
	8. Translation
	9. Termination
	10. Future revisions of this license
	11. Relicensing
	Addendum: How to use this License for your documents

	Index

