[Top][All Lists]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: Tensorflow bindings

From: Jan Wedekind
Subject: Re: Tensorflow bindings
Date: Thu, 13 Dec 2018 22:46:25 +0000 (GMT)
User-agent: Alpine 2.20 (DEB 67 2015-01-07)

Here follows another example. The MNIST handwritten digit database is a well-known benchmark for machine learning. The following code implements a neural network with two convolutional layers and two fully connected layers. The example achieves an error rate of 2.75%. I am planning to add regularization which might improve the result a bit.

    (use-modules (oop goops)
                 (ice-9 binary-ports)
                 (ice-9 format)
                 (srfi srfi-1)
                 (rnrs bytevectors)
                 (system foreign)
                 (aiscm core)
                 (aiscm xorg)
                 (aiscm tensorflow))

    ; Get MNIST data at

    (define (read-images file-name)
      (let* [(f     (open-file file-name "rb"))
             (magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
             (n     (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
             (h     (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
             (w     (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
        (if (not (eqv? magic 2051)) (error "Images file has wrong magic 
        (let [(bv (get-bytevector-n f (* n h w)))]
          (make (multiarray <ubyte> 3) #:memory (bytevector->pointer bv) 
#:shape (list n h w)))))

    (define (read-labels file-name)
      (let* [(f     (open-file file-name "rb"))
             (magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
             (n     (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
        (if (not (eqv? magic 2049)) (error "Label file has wrong magic number"))
        (let [(bv (get-bytevector-n f n))]
          (make (multiarray <ubyte> 1) #:memory (bytevector->pointer bv) 
#:shape (list n)))))

    (define f (open-file "train-labels-idx1-ubyte" "rb"))
    (define magic (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness 
    (if (not (eqv? magic 2049)) (error "Label file has wrong magic number"))
    (define n2 (bytevector-u32-ref (get-bytevector-n f 4) 0 (endianness big)))
    (if (not (eqv? n n2)) (error "Number of labels does not match number of 
    (define bv (get-bytevector-n f n))
    (define labels (make (multiarray <ubyte> 1) #:memory (bytevector->pointer 
bv) #:shape (list n)))

    (define images (read-images "train-images-idx3-ubyte"))
    (define labels (read-labels "train-labels-idx1-ubyte"))
    (define n (car (shape images)))

    (define s (make-session))

    (define x (tf-placeholder #:dtype <ubyte> #:shape '(-1 28 28)))
    (define y (tf-placeholder #:dtype <ubyte> #:shape '(-1)))

    (define r1 (tf-reshape (tf-sub (tf-mul (/ 1 256) (tf-cast x #:DstT <double>)) 
0.5) (arr <int> -1 28 28 1)))
    (define k1 (tf-variable #:dtype <double> #:shape '(3 3 1 4)))
    (define c1 (tf-conv2d r1 k1 #:strides '(1 1 1 1) #:padding 'VALID))
    (define p1 (tf-relu (tf-max-pool c1 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) 
#:padding 'VALID)))

    (define k2 (tf-variable #:dtype <double> #:shape '(3 3 4 16)))
    (define c2 (tf-conv2d p1 k2 #:strides '(1 1 1 1) #:padding 'VALID))
    (define p2 (tf-relu (tf-max-pool c2 #:strides '(1 2 2 1) #:ksize '(1 2 2 1) 
#:padding 'VALID)))

    (define d (* 5 5 16))
    (define r2 (tf-reshape p2 (to-array <int> (list -1 d))))
    (define m1 (tf-variable #:dtype <double> #:shape (list d 40)))
    (define b1 (tf-variable #:dtype <double> #:shape '(40)))
    (define l1 (tf-relu (tf-add (tf-mat-mul r2 m1) b1)))

    (define m2 (tf-variable #:dtype <double> #:shape '(40 10)))
    (define b2 (tf-variable #:dtype <double> #:shape '(10)))
    (define l (tf-softmax (tf-add (tf-mat-mul l1 m2) b2)))

    (define prediction (tf-arg-max l 1 #:name "prediction"))

    (run s '() (tf-assign k1 (tf-mul (/ 1 9) (tf-random-uniform (arr <int> 3 3 1 4) 
#:dtype <double>))))
    (run s '() (tf-assign k2 (tf-mul (/ 1 9) (tf-random-uniform (arr <int> 3 3 4 16) 
#:dtype <double>))))
    (run s '() (tf-assign m1 (tf-mul (/ 1 n) (tf-random-uniform (to-array <int> (list 
d 40)) #:dtype <double>))))
    (run s '() (tf-assign b1 (fill <double> '(40) 0.0)))
    (run s '() (tf-assign m2 (tf-mul (/ 1 40) (tf-random-uniform (arr <int> 40 10) 
#:dtype <double>))))
    (run s '() (tf-assign b2 (fill <double> '(10) 0.0)))

    (define vars (list k1 k2 m1 b1 m2 b2))

    (define yh (tf-one-hot y 10 1.0 0.0))

    (define cost (tf-neg (tf-mean (tf-add (tf-mul yh (tf-log l)) (tf-mul (tf-sub 1.0 
yh) (tf-log (tf-sub 1.0 l)))) (arr <int> 0 1))))

    (define gradients (tf-add-gradient cost vars))

    (define alpha 0.4)
    (define step (map (lambda (v g) (tf-assign v (tf-sub v (tf-mul g alpha)))) 
vars gradients))

    (define j 0.0)

      (lambda (epoch)
          (lambda (i)
            (let* [(range (cons i (+ i 50)))
                   (batch (list (cons x (unroll (get images range))) (cons y 
(get labels range))))
                   (js    (run s batch cost))]
              (set! j (+ (* 0.99 j) (* 0.01 js)))
              (format #t "\r~2d, ~5d/~5d: ~6,4f" epoch i n j)
              (run s batch step)))
          (iota (/ n 50) 0 50)))
      (iota 3))

    (define test-images (read-images "t10k-images-idx3-ubyte"))
    (define test-labels (read-labels "t10k-labels-idx1-ubyte"))
    (define n-test (car (shape test-images)))

    (define predicted (run s (list (cons x test-images)) prediction))
    (define n-correct (sum (where (eq predicted test-labels) 1 0)))
    (format #t "error rate: ~6,4f~&" (- 1.0 (/ n-correct n-test)))


reply via email to

[Prev in Thread] Current Thread [Next in Thread]