
GSoC’23 Proposal
For

The GNU Organisation

Mentors:
pukkamustard
Attila Lendvai

Name:
Shivam Madlani

E-mail:
shivammadlani5@gmail.com

Project:
Decentralized substitute distribution

mailto:shivammadlani5@gmail.com

Summary:-
The aim of the project is to robustify the current system for downloading
substitutes in The GUIX Package Manager. Currently the servers upload
pre-built packages as a compressed archive file (.nar). Instead we could
use ERIS. It breaks down content into smaller chunks (1KiB or 32KiB
according to the content size) which will then be transported through the
network/sneakernet. ERIS would allow multiple transport protocols like
IPFS(InterPlanetary File System), HTTP and GNUnet.
My proposal is to use an external drive to transfer substitutes. This will
be better for users with poor internet connectivity. The package content
can be encoded using ERIS and stored in SQLite database in
drives/flash drives. The portable database can then be decoded and
used on any supporting computer.

Benefits:-
Implementing this project will robustify the current setup. Currently the
two build farms (ci.guix.gnu.org and bordeaux.guix.gnu.org) remain the
primary source for most users and also the primary points of failure.

GNU benefits:
This project will allow substitutes to be air-gappable and thus reduce
load on the build farms.

User benefits:
More reliable transfers.
Significant Improvement of file transfer speeds and reduces network
usage.

Deliverables:-

Library to be integrated with GUIX: guile-eris

Currently the Guile implementation of ERIS is done in guile-eris library.
This can be used to encode/decode content using ERIS standards.

https://codeberg.org/eris/guile-eris/

● About ERIS:

ERIS (Encoding for Robust Immutable Storage) is a method of
encoding content into uniformly sized encrypted blocks with read
capability. Each block is assigned a content-id (CID) using which
the content can be reassembled. The content can also be
referenced with a URN.

● How ERIS encodes:

ERIS breaks down content into uniformly sized blocks of size
(1KiB or 32KiB). ERIS will automatically add padding to the blocks
having data lesser than the block size.
For content smaller than 16KiB- block size of 1KiB is
recommended
For content larger than 16KiB- block size of 32KiB is
recommended for better efficiency.

○ The encoding process creates a binary tree of uniformly
sized encrypted leaf nodes.

○ The leaf nodes (level 0) represent the actual encoded
content.

○ The internal nodes (except head and level 0) consist of
references to nodes at lower levels.

○ The root node denotes read-capability.

The below figure visualises encoding content that has 4 leaf
nodes.

*reference: ERIS specification document

● How ERIS decodes:

To decode content we need:

○ The reference to the root node
○ The key to decrypt the root node
○ The level of the root node

Software added/changed
We will be adding SQLite to store the substitutes.

Affected project code
To store any data in a database we have to create a schema. Similarly,
in order to use SQLite we need to define a schema. Later on we can add
data of the substitutes into the tables in the form of a BLOB (Binary
Large Object).

https://eris.codeberg.page/spec/#name-encoding

We define our table like this:-

CREATE TABLE IF NOT EXISTS eris_blocks{
Ref BLOB PRIMARY KEY,
block BLOB

}

After defining table we can run SQL queries like:

INSERT INTO eris_blocks (eris-encoded-data) VALUES (XYZ)

Where XYZ will be ERIS encoded blocks.

In order to retrieve all the contents from the DB we use SQL query:

SELECT (eris-encoded-data) FROM eris_blocks WHERE id=x

Affected documentation:

Documentation related to SQLite will have to be added in the guix user
manual in case the user wants to know more about sneakernet.

User experience with the added code:

The user running guix install {xyz} will be able to pass a flag (e.g.
--sneakernet-write and –sneakernet-read). If the computer detects any
compatible drives, the user will be asked to select it and after that the
package's installation will begin. Then encoding using eris will be done
by the user who writes substitutes to the disk and decoding will occur on
the user installing from the drive.

Plan:-

Proposed Timeline:
The below timeline shows roughly on what I'll be working and for how
long.

Pre-GSoC
Present day to 10th
April

Learn more about guile-SQLite bindings and
exploring guix codebase.

12th April to 4th May Interacting with the mentors to finalise my
approach and get to plan ahead for potential
blockers or unknown issues that might occur
in the coding period.

Community Bonding period
4th May to 28th May Clearing any sort of doubt including the setup

or the approach to the problem.

Getting to know the mentors and about the
time during which I can contact them.

Creating a written roadmap for the project and
setting up guix on another computer which will
be used for testing purposes.

Coding period
29th May to 22nd June Implementing the storing of encoded ERIS

blocks into SQLite database.

If this part is successfully implemented then
the rest is easy. It will take a bit of time to
learn about guile-sqlite bindings but once I'm
familiar it’ll be easy.

At this point I believe the project will be 60%
complete.

22nd June to 2nd July Implement the decoding of SQLite data back
to the substitutes.

2nd July to 8th July Buffer period for unexpected bugs and errors

8th July to 10th July Thoroughly testing my project on multiple
computers(Virtual and physical).

Midterm-evaluations(10th to 14th July)
14th July to 21st August Improving on the feedback provided by the

mentors during the mid-evaluations and
working on cleaning up the code. Making
minor changes for improving user
experience.

21st August to 28th
August

Submission of my final work to the mentors.

Progress tracking will be done based on the above timeline. The 6 day
buffer at the end will be used up for unexpected issues faced during
coding period.

After the Mid-term evaluation is done it will be pretty clear if the project
will complete in time or will need more work. If it needs more work then
I'll have a talk with the mentors to come up with a solution.

I am confident of staying on top of the proposed project timeline.
However, if under any circumstance the project is incomplete it will still
provide an excellent ground for new contributors to work and learn on as
most of the complex stuff will be already done.

September 5
Results announced

Communication:-

So far I’ve been in touch with the project mentors regularly to understand
and learn about the project. If I will be working on this project I plan to
update my mentors once every two days giving them complete detail on
the things that I've accomplished and also the things I'm currently
working on. This will ensure that everything goes according to plan and
there is no communication gap between me and the mentors. I also plan
to have weekly meetings with the mentors (if they are available) to
summarise my work over the week and to learn more about the tech
underlying guix.

Qualification:-

My motivation and benefits from this project:

My particular interest was the working of package managers and I have
tested quite a lot of them (apt, dnf, zypper and pacman). And then I
came across The Guix package manager. I also built a decentralised
Voting app in a hackathon (won 2nd prize) using solidity. The concept of
decentralisation amazed me and I started looking for projects involving it.
And hence my interest in this project. This would be an awesome
opportunity for me to learn more about decentralised web and package
managers and apply some of that into a real world application.

Plans after GSoC:

As the project revolves around my interests, I plan to continue
contributing to the project by adding more transport protocols (planning
on working on GNUnet next) and robustify the current GUIX setup after
the GSoC period ends. I am also interested in conducting performance

evaluations but I’m still in the exploration phase for this part and scoping
it out currently with the help of mentors. I loved the GUIX community
support and would love to build with you guys. I plan to be an Open
Source contributor forever because I have personally learnt a lot from it
and want to give it back to the community. :))

My previous work on Open Source:

Yes, I have worked with oppia-android a year back and I have been an
Open Source contributor ever since. I have worked a little bit on
gnome-maps as well. I've been consistently contributing in my free time.

Here are a few links from my work in oppia-android:
1. https://github.com/oppia/oppia-android/issues/3591
2. https://github.com/oppia/oppia-android/pull/4280
3. https://github.com/oppia/oppia-android/pull/4283
4. https://github.com/oppia/oppia-android/issues/4288

Skills:

I have a good understanding of networking and decentralisation in
general both of which satisfies the skill criteria. I have a good idea of
how guix substitutes are packed and I've learnt to use emacs/geiser with
guile REPL for optimal development experience. Other than that I have
experience working with package managers. I also have good
communication skills which is very important for any project. Lastly, I've
successfully completed almost all the tasks assigned by my mentor that
includes setting up the dev environment and encoding content using
guile-eris and guile-cbor into a cbor file.

Skills to learn:

I will have to learn more about the codebase of ERIS and integrate it
with SQLite using guile-sqlite bindings. Other than that I'll have to be
more familiar with the emacs setup and not to forget The Git Workflow of
GNU GUIX.

https://github.com/oppia/oppia-android/issues/3591
https://github.com/oppia/oppia-android/pull/4280
https://github.com/oppia/oppia-android/pull/4283
https://github.com/oppia/oppia-android/issues/4288

My Background:

I am a 2nd year undergraduate student pursuing ICT (Information and
Communication Technology) from DA-IICT, INDIA. I have been
contributing to open source in my free time for more than a year now.
And I've been in touch with the project mentors for more than a month
now. They helped me understand more about the GUIX codebase,
decentralisation and lots of other stuff related to the project. My past
experiences include building android apps, apis using node.js. I've also
tried diving deep into the C language and working with hardware.

Very excited to work with you guys!!

EOF

