
CONSTRAINT-BASED TIME-
TABLING—A CASE STUDY

MARTIN HENZ and J™ RG Wü RTZ
Programming Systems Lab, Saarland University, and
German Research Center for Artificial Intelligence
(DFKI), SaarbrŸ cken, Germany

In this article we concentrate on a typical scheduling problem: the computation of a timetable

for a German college. Like many other scheduling problems, this problem contains a variety

of complex constraints and necessitates special-purpose search strategies. Techniques from

operations research and traditional constraint logic programming are not able to express

these constraints and search strategies on a sufficiently high level of abstraction. We show that

the higher order concurrent constraint language Oz provides this high-level expressivity, and

can serve as a useful programming tool for college time-tabling.

Constraint logic programming over finite domains is a rapidly growing research

area aimed at the solution of large combinatorial problems. For many real-world

problems the constraint logic programming approach (extended to the concurrent

constraint approach) is competitive or better than traditional operations research

(OR) algorithms. OR techniques lack flexibility, and the effort to achieve customized

solutions is often unaffordable. Constraint logic programming combines the

flexibility of the approaches in artificial intelligence with the efficiency known from

special-purpose algorithms in OR.

The power of constraint logic programming has been proven by languages such

as CHIP (Dincbas et al., 1988), Prolog III (Colmerauer, 1990), or CLP(R) (Jaffar &

Michaylov, 1987). To solve real-world problems, several new constraints were

added as primitives (like atmost or the cumulative constraint (Aggoun & Beldiceanu,

1993) for scheduling or placement problems importing experience from OR). This

approach might be viable for well-known problems but it is not going to foster the

exploration of new areas of applications. More clarity and flexibility for the

programmer were achieved by clp(FD) (Diaz & Codognet, 1993) inspired by cc(FD)

(Van Hentenryck et al., 1991). This approach is based on a single primitive constraint

(called indexical) with which more complicated constraints may be defined. While

Applied Artificial Intelligence, 10:439± 453, 1996
Copyright � 1996 Taylor & Francis
0883-9514/96 $12.00 + .00 439

We thank the Prorektor of the Catholic College for Social Work at Saarbrücken, Peter Huberich, for explaining

his timetabling problems to us. We thank Tobias Müller for implementing the constraint solver and Benjamin

Lorenz for maintaining the timetable program. Martin Müller and Christian Schulte contributed comments on a

draft of the article. The research reported in this article has been supported by the Bundesminister für Bildung,

Wissenschaft, Forschung und Technologie (FTZ-ITW-9105), the Esprit Project ACCLAIM (PE 7195), and the

Esprit Working Group CCL (EP 6028).

The DFKI Oz system and the documentation are available from the programming systems lab of DFKI through

anonymous ftp from ps-ftp.dfki.uni-sb.de or through WWW from http://ps-www.dfki.uni-sb.de/oz/.

Address correspondence to Martin Henz, Programming Systems Lab, Saarland University, P.O. Box 15 11 50,

66041 Saarbrücken, Germany. E-mail: henz@ps.uni-sb.de

in terms of efficiency, clp(FD) is competitive with CHIP, for certain benchmarks, it

adds some flexibility. However, still missing is one characteristic that we consider

essential for solving certain constraint problems: the flexibility to exploratively

invent new constraints and search strategies. While experimental languages such as

cc(FD) (Van Hentenryck et al., 1995) and AKL(FD) (Carlson et al., 1994) provide

flexibility in formulating constraints, their search strategies are still fixed.

Oz (Smolka, 1995b; Schulte & Smolka, 1994; Schulte et al., 1994; Smolka &

Treinen, 1995) is a concurrent constraint language providing for functional, object-

oriented, and constraint programming. It is based on a simple yet powerful com -

putation model (Smolka, 1995a), which can be seen as an extension of the concurrent

constraint model (Saraswat & Rinard, 1990).

In this article we describe how the unique features of Oz contribute to computing

the timetable of a German college that we describe in the next section. The problem

contains a combination of complex constraints preventing the application of more

standard timetabling techniques.

What can Oz offer to solve this problem?

Constraint programming. The concurrent constraint language Oz allows us to restrict

the possible values of variables to finite sets of integers. In the section, Con-

straints and Propagators in Oz, we introduce some basics about concurrent

constraint programming. Crucial for constraint programming is the ability to

add constraints on variables concurrently and incrementally. In Oz, this is done

by propagators, which can express several constraints of our timetable problem.

Reified constraints. A general scheme, called reified constraints, allows us to

express the remaining constraints of our timetable problem, as discussed in the

section Reified Constraints. Reified constraints reflect the fact that a constraint

holds into a 0/1-valued variable.

Constructive disjunction. Disjunctive constraints (like resource or capacity con-

straints) can be used constructively in Oz, i.e., information common to different

branches can be lifted out for active pruning (Van Hentenryck et al., 1995). The

section Constructive Disjunction describes this technique in detail and shows

how it can be used for overlap constraints in our timetabling problem.

Flexible enumeration. In Oz the programmer can invent customized search strategies

for solving the timetabling problem and optimizing the solutions found. In the

section, Enumeration, we develop a search strategy especially adapted to our

problem, combining the first-fail heuristic for variable selection with a priority

scheme for value selection. This strategy results in an efficiently computed first

solution approximating an optimality criteria for the distribution of the college

courses.

Optimization. This first solution can be further optimized using a branch-and-bound

technique. Optimization can be achieved through an incremental process, al-

440 M. Henz and J. WŸ rtz

lowing the user to inspect the current solution any time and to interrupt and

resume the optimization at will, as described in the section Optimization.

Interoperability. The interoperability libraries of Oz allow convenient programming

of graphical user interfaces, including the visualization of the computed time-

tables, as presented in the section, Implementation Issues.

In the final section we compare the described techniques with other approaches

in constraint logic programming. Owing to space limitations, we cannot further

detail other aspects of Oz like conditionals and disjunctions, which have been shown

to be useful for other constraint problems. The interested reader is referred to the

documentation of the Oz system (see footnote number two on page 439).

PROBLEM

Our goal was to find a weekly timetable for the Catholic College for Social Work

in Saarbrücken, Germany, in the spring semester 1995. The school offers a 4-year

program for a degree in social work. Some courses are mandatory for students of a

certain year, while others are optional and open to all students. There are 91 courses,

34 instructors, and 7 rooms of varying size. The assignment of instructors to courses

is fixed. Each course needs to take place in a room of sufficient size. There are five

school days, and the courses are held between 8:15 am and 5 pm. They may start

every quarter of an hour. There are short courses of 3/4 of an hour and long courses

of 1-1/2 hours. There must be a break of at least 1/4 hour after a short course and of

at least 1/2 hour after a long course.

In the following we state the different constraints that a schedule must fulfill.

 C1. Some courses are limited to certain time slots.

 C2. Some instructors have times of unavailability.

 C3. There are different lunch breaks for the different years in the program.

 C4. Some courses must be held after others.

 C5. There are sets of courses whose members must be held in parallel.

 C6. To every course, a room of sufficient size must be assigned.

 C7. An instructor can only teach one course at a time.

 C8. Two instructors want to take turns in caring for an infant child and

therefore cannot teach at the same time.

 C9. The mandatory courses of each year must not overlap.

C10. Some optional courses must not overlap with courses of the first 2 years,

and others not with courses of any year.

C11. Two mandatory courses a year may overlap if they are split into groups.

C12. The instructors do not want to teach on more than 3 days a week.

C13. All members of some sets of courses must be held on different days.

Constraint-Based Time-Tabling 441

The schedule should obey the following criteria as closely as possible. The

courses of the first 2 years should be grouped around Monday, Tuesday, and

Wednesday. If this is not possible, they should be scheduled on Thursday or Friday

morning. The third year courses should be placed on Wednesday, and the fourth

preferably on Tuesday and Thursday. The number of courses after the lunch break

and on Thursday and Friday should be minimized. (In Germany, several holidays in

the spring semester fall on Thursdays.)

CONSTRAINTS AND PROPAGATORS IN OZ

Our goal is to assign to every course a starting time and a room. Note that the

assignment of instructors to courses is fixed in our college. Here, we concentrate on

the starting time and show in the following section how the room assignment is

handled.

The courses are held between 8:15 am and 5 pm on five school days and may

start every quarter of an hour. Thus, there are 36 ´ 5 = 180 possible starting times

for each course. Since there are 91 courses, the overall search space contains 180
91

elements. Instead of enumerating the whole search space and testing whether a

valuation satisfies all the constraints (generate and test), the idea of constraint

programming is to restrict the search space a priori through constraints. While the

search space is being explored, more information on the start times becomes known,

i.e., the search space can be further pruned, while it is being explored. A program -

ming language for constraint programming needs to provide flexible means to

express pruning operators. In this and the following section, we concentrate on

pruning operators, while the exploration of the search space is described in the

sections, Enumeration and Optimization.

We represent a course, say, Psychology 101, by grouping together its start time,

duration, instructor, room size, and name in a record of the form

Psych101 = course(start:_ dur:6 instructor: `Smith’ roomsize:big name: `Psychology

101’)

The underscore _ indicates that no information on the start value is known. The start

time of a course is represented by an integer denoting the corresponding quarter of

the school week. Because initially it is known that the course must start between

quarter 1 and quarter 180, we can add the constraint

Psych101.start :: 1#180

expressing that this course can take values between 1 and 180, i.e., Psych101.start

Î {1, . . ., 180} in a more mathematical notation. We say that the start time is

constrained to a finite domain.

442 M. Henz and J. WŸ rtz

Such constraints are stored in a constraint store. For the constraints residing in

the constraint store, Oz provides efficient algorithms to decide satisfiability. The

largest set of integers satisfying all the constraints for a variable in the store is called

the domain of that variable. To distinguish the constraints in the store from more

complex constraints, we often call them basic constraints.

The idea of constraint programming is to install constraints that further limit the

possible start value for every course. For example, a constraint of type C1 may say

that the course Psychology 101 must be held on Monday morning or on Tuesday

morning. This constraint is imposed on the constraint store by the expression

Psych101.start :: [1#18 37#54] limiting the start value in the constraint store to

satisfy Psych101.start Î {1, . . ., 18, 37, . . ., 54}. (The term [1#18 37#54] denotes

a list consisting of the two pairs 1#18 and 37#54.) Besides C1, the constraints C2

and C3 can be expressed by such constraints.

For more complex arithmetic constraints, it is known that deciding their satis-

fiability is not computationally tractable (there are several NP-complete problems

on finite domains, e.g., graph coloring). Thus such constraints are not contained in

the constraint store but are modeled by installing so-called propagators inspecting

the constraint store, as depicted in Figure 1.

A propagator inspects the store, and when values are ruled out from the domain

of a variable, it may add more information to the store, i.e., it may amplify the store

by adding more basic constraints. Thus we are replacing global consistency, which

is assured for the constraints in the store, by local consistency, where unsatisfiability

may not be detected. It is important to allow propagators to act concurrently, since

it is not statically known when they will be able to perform their computation. This

is one major motivation behind concurrent constraint programming.

As an example, consider a constraint of type C4, which states that the course

Sociology 101 must be held after our course Psychology 101. It can be expressed

by installing the propagator

Psych101.start + Psych101.dur =<: Socio101.start

For example, if Psych101.start is constrained as above to Monday morning or

Tuesday morning, and Psych101.dur to quarter 6 of the school week, then the

propagator will add the basic constraint

Socio101.start :: 7#180

Figure 1. Propagators inspecting the constraint store.

Constraint-Based Time-Tabling 443

to the constraint store, and vice versa. If later on it becomes known that Socio101

starts the latest at 10:30 am on Monday (Socio101.start Î {7, . . ., 10}),

Psych101.start will be constrained to start the latest at 9:00 am (Psych101.start Î
{1, . . ., 4}). Note that the propagator remains active, waiting for more information

on either Psych101.start or Socio101.start.

Observe that in the implementation we have to add the necessary break after

Psych101 (depending on Psych101.dur) but we omit the breaks in this presentation

for simplicity.

The constraint C5 is modeled by using the propagator =: expressing equality.

Note that S=:T is modeled by S=<:T S>=:T. Thus, holes in the domains of S and T

as in Psych101.start are not considered for =:. It implements only partial arc-

consistency instead of full arc-consistency, in the terminology of Macworth (1977).

Interval consistency can be implemented efficiently, since the propagator only needs

to watch the currently smallest and biggest possible values for the involved variables.

REIFIED C ONSTRAINTS

We have seen in the previous section that propagators are crucial components

in a constraint programming system, since they allow us to prune the search space.

A constraint programming language therefore must strive to easily express many

kinds of propagators. In this section, we introduce reified constraints as a generic

tool to express new propagators and show how the remaining constraints C6±C13

of our college problem can be expressed with them.

Constraint C6 says that for every point in time the number of courses of a certain

size must not exceed the number of rooms of that size. Assume that there are

NumberOfRooms different rooms available of a given size. If we are able to compute

for every quarter of an hour Q of the teaching week the number of courses

CourseAtQ of the given size being held in this quarter, then we only would need to

install the propagator

CoursesAtQ =<: NumberOfRooms

to express C6 for every quarter Q and every room size. To compute CoursesAtQ, it

would be convenient to be able to constrain a boolean variable CAtQ to 1 if a given

course overlaps Q and to 0 if it does not (and vice versa). Then CoursesAtQ can be

obtained simply by computing the sum of all CAtQ over all courses of the given

size. To compute CAtQ, we use reified constraints, i.e., propagators that reflect the

validity of a constraint into a variable. Reified constraints are also known in the

literature as nested constraints (Benhamou & Older, 1992; Sidebottom, 1993). The

constraint whose validity we want to reflect has the form

Course.start :: Q-Course.dur+1 # Q

444 M. Henz and J. WŸ rtz

expressing that Course has started before or at quarter Q, but not finished at Q.

Now we reflect the validity of this constraint into the variable CAtQ:

CAtQ = Course.start :: Q-Course.dur+1 # Q

First, every reified constraint always constrains the first variable to be either 0 or 1,

i.e., CAtQ Î {0,1}. As in previous propagators, information flows either way. If the

store logically implies Course.start Î {Q-Course.dur+1, . . ., Q}, CAtQ is con-

strained to 1. If the store implies Course.start Ï {Q-Course.dur+1, . . ., Q}, CAtQ

is constrained to 0. If CAtQ is constrained to 1 or 0, the basic constraint

Course.start :: Q -Course.dur+1 # Q or i ts negation Course.start \: : Q -

Course.dur+1 # Q is imposed on the store. It is essential that while CAtQ is not

determined to 0 or 1, the constraint on the right-hand side is used only for

checking but not for pruning. If already NumberOfRoom s courses are scheduled

at Q, the remaining boolean variables CAtQ will be constrained to 0 by the

propagator CoursesAtQ =<:Num berOfRooms.

Because we guarantee that at each time there are sufficiently many rooms

available, it is straightforward to assign the possible rooms to courses. In particular,

the room assignment can be performed after the timetable computation, considerably

reducing the complexity of the problem.

Constraints C7±C11 express overlapping conditions on courses. Assume that

Psych101 and Socio101 are mandatory courses for first-year students. Then C9 says

that they may not overlap. This constraint can be expressed with a disjunction of the

following form:

 Psych101.start + Psych101.dur £ Socio101.start

Ú Socio101.start + Socio101.dur £ Psych101.start

If we are able to install a propagator stating that at least one of a given set of complex

constraints is valid, we can express this disjunction. Thus our problem is solved by

reifying complex constraints:

(Psych101.start + Psych101.dur =<: Socio101.start)

 + (Socio101.start + Socio101.dur =<: Psych101.start) >=: 1 (1)

which is an abbreviation for

B1 = Psych101.start + Psych101.dur =<: Socio101.start

B2 = Socio101.start + Socio101.dur =<: Psych101.start

B1 + B2 >=: 1

Let us consider the first reified constraint. If Psych101.start + Psych101.dur £
Socio101.start is logically implied by the constraint store, the basic constraint B1::1

Constraint-Based Time-Tabling 445

is imposed on the store. If Psych101.start + Psych101.dur > Socio101.start is

logically implied by the constraint store, the basic constraint B1::0 is imposed on

the store. If B1 is constrained to 1, the propagator Psych101.start + Psych101.dur

=<: Socio101.start is installed, and if B1 is constrained to 0, the propagator

Psych101.start + Psych101.dur >: Socio101.start is installed.

As an example, consider now Psych101.start Î {8, . . ., 12}, Psych101.dur = 6,

Socio101.start Î {10, . . ., 14} and Socio101.dur = 6. The second reified constraint

constrains B2 to 0 because the constraint store implies Socio101.start +

Socio101.dur > Psych101.start. The constraint B2 ::0 in the store allows the

propagator B1 + B2 >=:1 to constrain B1 to 1. This allows the first reified propagator

to install the propagator Psych101.start + 6 =<:Socio101.start, constraining

Psych101.start to 8 and Socio101.start to 14, the only possible values, if the two

courses do not overlap.

Encoding the constraints C7±C10 now becomes straightforward. For example,

C7 says that no two courses of an instructor must overlap. Thus for every pair of

courses of an instructor, a propagator of the above form must be installed.

The constraint C11 boils down to the constraint that a certain course, say,

SplitCourse, may overlap with at most one of a list OtherSplitCourses of other

courses. If we are able to install a propagator that constrains a variable Overlap to

1, if a course overlaps with the course SplitCourse, and to 0, if it does not, we can

build the sum Sum of these variables over OtherSplitCourses. Then we only need

to impose the constraint Sum =<:1, stating that at most one of OtherSplitCourses

overlaps with SplitCourse.

So how can we constrain the Overlap variables? Two courses, SplitCourse

and OtherSplit, overlap if OtherSplit starts before SplitCourse is finished and

vice versa, i.e., if both the constraints hold: SplitCourse.start + SplitCourse.dur

>: OtherSplit.start and OtherSplit.start + OtherSplit.dur >: SplitCourse.start. The

variable Overlap must be constrained to 1 if these two constraints hold, and to 0

otherwise:

Overlap = (SplitCourse.start + SplitCourse.dur >: OtherSplit.start)

 + (OtherSplit.start + OtherSplit.dur >: SplitCourse.start) =: 2 (2)

which expands to

B1 = SplitCourse.start + SplitCourse.dur >: OtherSplit.start

B2 = OtherSplit.start + OtherSplit.dur >: SplitCourse.start

Overlap = B1 + B2 =: 2

As usual, this constraint also works the other way around, e.g., if Overlap is known

to be 1, then B1 + B2 =:2 is installed. Thus B1 and B2 are constrained to 1, and

hence both propagators are installed. If Overlap is known to be 0, for example,

446 M. Henz and J. WŸ rtz

because another Overlap variable in Sum is already 1, the propagator B1 + B2 \=:

2 is installed, stating that only one of B1 and B2 may be constrained to 1. Thus, if

for example, B2 is constrained to 1, then B1 is constrained to 0 and the reified

constraint for B1 installs the nonreified version of its negation: SplitCourse.start +

SplitCourse.dur =<: OtherSplit.start.

In a similar way, the constraint C12 can be expressed. Assume that all courses

taught by a given instructor are contained in the list Courses. For every instructor

and every day, we compute the boolean value TeachesOnDay with

TeachesOnDay = 1 =<: SumOfCoursesOnDay

where SumOfCoursesOnDay is the sum of the boolean variables obtained by

reifying for every element of Courses a constraint that states that the course is taught

on that day. For every instructor, we can express that she only teaches on 3 days with

the propagator

TeachesOnDays =<: 3

where TeachesOnDays is the sum of all TeachesOnDay variables over the week. For

example, if three courses have already been placed on different days, say, Monday

through Wednesday, then all the remaining courses are constrained to be held on

Monday through Wednesday, thus reducing the search space considerably.

The same technique can be applied for our last constraint C13. Assume that all

elements of the list DifferentDayCourses with length NumberOfDifferentDayCourses

must be held on a different day. Then the propagator

TeachesOnDays =: NumberOfDifferentDayCourses

does the job, where TeachesOnDays is defined as for C12.

CONSTRUC TIVE DISJUNC TION

In this section we reconsider how to model the overlapping of two courses. Let

us assume that the starting time of our two courses Psych101 and Socio101 is

between (and including) 8:15 am (quarter 1) and 10:30 am (quarter 10), i.e.,

Psych101.start, Socio101.start Î {1, . . ., 10}, and both durations are 6 quarters.

Then the nonoverlapping constraint of the courses expresses the disjunction

Psych101.start + 6 £ Socio101.start Ú Socio101.start + 6 £ Psych101.start

The left alternative of the disjunction constrains Psych101.start to {1, . . ., 4}, i.e.,

Psych101 must start before or at 9 am. Analogously, the right alternative constrains

Constraint-Based Time-Tabling 447

Psych101.start to {7, . . ., 10}, i.e., it must start after or at 9:45 pm. Thus, independent

of which alternative will succeed, we know that Psych101 cannot start at 9:15 am

(quarter 5) or at 9:30 am (quarter 6), i.e., Psych101 Î {1, . . ., 4, 7, . . ., 10}.

The propagators in the previous section, however, do not extract this valuable

information on Psych101. To obtain more pruning, there is a more active form of

disjunction available in Oz, called constructive disjunction (Van Hentenryck et al.,

1995). It extracts the common information from the alternatives of a disjunction. We

replace program Eq. (1) by constructive disjunction, supported in the following syntax:

dis Psych101.start + Psych101.dur =<: Socio101.start

[] Socio101.start + Socio101.dur =<: Psych101.start

end

As in Eq. (1), if one alternative is unsatisfiable, the propagator corresponding to the

other alternative is installed. Additionally, common information is extracted as described

above. While the pruning is enhanced by constructive disjunction, it is also potentially

more expensive, since extraction of common information may be attempted relatively

often. Thus it takes some experimentation to find out which form of disjunction is most

appropriate for a given application. It is essential that propagators also take holes in the

domains into account because in our problem, constructive disjunction cuts holes in

domains of variables. This is the case of reified basic constraints like B = X::9#10. If,

for example, the basic constraint X::[1#8 11#15] is added, B is constrained to 0. The

use of constructive disjunction for all nonoverlap constraints (C7±C11) in our college

problem resulted in a speedup of more than 1 order of magnitude.

For modeling constraint C12, we use a ternary constructive disjunction instead

of program Eq. (2):

dis B =: 1 SplitCourse.start + SplitCourse.dur >: OtherSplit.start

OtherSplit.start + OtherSplit.dur >: SplitCourse.start

[] B =: 0 SplitCourse.start + SplitCourse.dur =<: OtherSplit.start

[] B =: 0 OtherSplit.start + OtherSplit.dur =<: SplitCourse.start

end

The common information is in this case extracted from all three alternatives (or two

if one alternative is known to be unsatisfiable). If all but one alternative is known

to be unsatisfiable, the propagators of the remaining alternative are installed (since

the disjunction must be true).

ENUMERATION

To achieve maximal pruning of the search space, we allow the propagators to

exhaustively amplify the constraint store. We call a store, together with all the

448 M. Henz and J. WŸ rtz

propagators, stable if none of the propagators can add any more information to

it. Typically, many variables still have more than one possible value after stability

of the store. Thus we want to explore the remaining search space. We proceed in

two steps. First, we compute a fairly good first solution as described in this

section, and then we optimize starting from this solution as described in the

following section.

To explore the remaining search space, one of the variables that has more than one

possible value is selected and speculatively constrained to these values. In order to

speculatively constrain a variable to a value, we impose this constraint on a copy of the

current constraint store, including all the propagators. If, later on, the computation fails,

another value can be tried on another copy of the store. (Instead of copying the store,

as is done in Oz, one can also trail the previous domain of the variable and restore it on

failure.) We call this process enumeration (in the literature it is also known as labeling).

Once a variable is speculatively constrained to an integer, some propagators typically

become able to amplify the constraint store again. When the constraint store becomes

stable again, the next variable is selected for enumeration, and so on. Thus propagators

allow us to prune the search space while it is being explored. This scenario makes clear

why a sequential language is inappropriate for describing constraint problems. In a

sequential language the complex interaction between enumeration and propagation

needs to be made explicit by the programmer, while concurrent constraint languages

allow us to conceptually separate propagation and enumeration. Sequential languages

like ECLiPSc (European Computer Science Research Center, 1994) deal with that

problem by introducing ad hoc concepts like freeze and demons.

The enumeration process has two degrees of freedom. First, the variable to be

enumerated next needs to be selected, and second, the order in which the remaining

possible values are tried needs to be fixed. It is an essential ingredient of Oz that

both variable and value selection can be programmed in Oz, achieving a high degree

of flexibility. For variable selection, we apply the first-fail strategy, in which a

variable with the currently smallest domain is selected.

Using the first-fail strategy, with the usual value selection beginning with the

smallest possible value, does not lead to a solution of our problem after 1 day of

computation on a Sun Sparc 20. (The usual first-fail strategy performs poorly

because this strategy tries to place courses in a compact timetable. Owing to the

topology of our search space, this results in a behavior we call ª thrashingº when

constraints are violated because the enumeration strategy is not ª cleverº enough to

find the responsible variables. An approach using intelligent backtracking could help

here (Bruynooghe & Pereira, 1984).) The so-called first-fit strategy, which tries to

place a course in the day with the fewest already placed courses as described by

Boizumault et al., 1994), also does not lead to a solution in reasonable time. Instead,

we enumerate the courses of each year starting from a different time of the week.

The domain from 1 through 180 is divided in 10 blocks, representing mornings and

afternoons of school days. These blocks can be individually ordered for each course

Constraint-Based Time-Tabling 449

(in the implementation, we use the same ordering for each year). By carefully

choosing these blocks, we can come to a first solution very fast.

We can make use of this additional flexibility to optimize the timetable accord-

ing to the criteria in the problem section above. We simply order the blocks such

that the preferred times are tried earlier than others. The first solution is now more

likely to be better with respect to the criteria.

OPTIMIZATION

In the previous section, we have seen how we approach the optimization criteria

by choosing a suitable enumeration strategy. However, experimentation shows that

enumeration alone cannot guarantee that the first solution will fulfill the criteria

sufficiently well. A way to achieve optimal solutions in constraint logic program -

ming is the use of branch-and-bound. Branch-and-bound starts out with one solution

and imposes that every next solution must be better than the previous one using a

suitably defined cost function.

Soft constraints, i.e., constraints that should hold but might be dropped, if

necessary, can be m odeled by including their reified version in the cost function.

As an example, consider that Course should be scheduled on Monday. The cost

function will use the result B of the reified constraint B = CourseNew::Monday

>: CourseOld::Monday.

As for many constraint problems in the real world, in time tabling there rarely

exists a unique cost function to optimize. For example, the goals to achieve compact

timetables for students and instructors may contradict each other. Hence we have

chosen general criteria that students and instructors can agree upon, such as mini-

mizing the number of courses being held after the lunch break.

After the first (fairly good) solution is found with customized first-fail, we use

branch-and-bound search to further optimize starting from this solution. Since,

owing to the topology of our search space, going for the globally best solution is not

feasible, the user can define a limit on the number of enumeration steps leading to

a resource-limited branch-and-bound search. The user can interrupt the optimization

at any time and request the currently best solution. This so-far best solution can be

inspected, and the user can decide whether it is good enough or whether to search

for a better solution. This process can be continued arbitrarily often. Thus we can

say that we implement an anytime algorithm.

IMPLEMENTATION ISSUES

Figure 2 shows the top-level graphical user interface to our timetabling program.

By using the object-oriented features of Oz and the interface to the window

programming toolkit Tcl/Tk (Mehl, 1994), it was straightforward to implement the

450 M. Henz and J. WŸ rtz

interface. The interoperability features of Oz (Schulte, 1994) allow the integration

of tools to display, type-set (using LATEX), and print the resulting timetable.

The visualization of the resulting timetable turned out to be extremely useful

for the human user to judge the quality of the solutions during optimization. Figure 3

shows a program-generated timetable visualization of a solution.

Other features of the language Oz, such as statically scoped higher order

programming and concurrent object-oriented programming, which are not available

in other constraint logic languages, vastly facilitate coding and maintenance of

program s.

The program deals with more than 25,000 propagators. The first solution is

found in less than 1 min on a Sun Sparc 20 with 60 MHz. A considerable optimization

of 5 lectures less at afternoons is obtained after a further 10 min.

COMPARISON WITH C ONSTRAINT LANGUAGES

In this section we briefly compare Oz with existing constraint systems for

solving combinatorial problems.

CHIP (Dincbas et al., 1988) is the forerunner for the most commercial constraint

systems. It lacks flexibility for search strategies and constructive disjunction. Only

a small set of predefined reified constraints is supported by an if-then-else construct.

Nevertheless, it is a successful commercial tool because several OR techniques have

been incorporated in operators dealing with disjunctive information. Disjunctive

constraints not appropriate for these operators must be modeled passively by

choice-points.

ECLiPSe (ECRC, 1994) is the research successor of CHIP enriched with

features like attributed variables. By using attributed variables, it is possible to

program user-defined constraints on a rather low level.

The system clp(FD) (Diaz & Codognet, 1993) is a constraint language

compiling into C-code. It is based on indexicals (Van Hentenryck et al., 1991)

and is the fastest fin ite dom ain system freely available. N evertheless it

Figure 2. Top-level graphical user interface.

Constraint-Based Time-Tabling 451

supports only basic ingredients for constraint programming (no reified constraints

or conditionals).

The portation of the indexical approach to the concurrent constraint paradigm

resulted in the system AKL(FD) (Carlson et al., 1994). It includes means to express

reified constraints and constructive disjunction. Unfortunately, the maximal domain

is limited to 255, and the system is not publicly available. The ability to invent new

search strategies is not given.

The language cc(FD) (Van Hentenryck et al., 1995) served as an inspiration for

both AKL(FD) and Oz, the language cc(FD) integrates for the first time reified

constraints, realized by the cardinality operator (which can be expressed in Oz), with

constructive disjunction. The language cc(FD) does not support the ability to invent

new search strategies. There is no implementation of cc(FD) available for further

comparison.

Figure 3. Program-generated timetable visualization.

452 M. Henz and J. WŸ rtz

REFERENC ES

Aggoun, A., and N. Beldiceanu. 1993. Extending CHIP in order to solve complex scheduling and placement

problems. Mathematical and Computer Modelling 17(7):57±73.

Boizumault, P., C. Gueret, and N. Jussien. 1994. Efficient labeling and constraint relaxation for solving time tabling

problems. Technical Report European Computer Science Research Center (ECRC)-94-38, Munich, Germany.

ECRC.

Benhamou, F., and W. J. Older. 1992. Applying interval arithmetic to integer and boolean constraints. Technical

report, Bell Northern Research, June 1992.

Bruynooghe, M., and L. M. Pereira. 1984. Deduction revision by intelligent backtracking. In J. A. Campbell (ed.),

Implementations of PROLOG. Chichester, England: Ellis Horwood Limited.

Carlson, B., M. Carlsson, and D. Diaz. 1994. Entailment of finite domain constraints. In P. van Hentenryck (ed.),

Proceedings of the International Conference on Logic Programming, 339±353. Cambridge, Mass.: MIT

Press.

Colmerauer, A. 1990. An introduction to PROLOG III. Communications of the ACM July:70±90.

Diaz, D., and P. Codognet. 1993. A minimal extension of the WAM for clp(FD). In Proceedings of the International

Conference on Logic Programming, 774±790. Cambridge, Mass.: MIT Press.

Dincbas, M., P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. 1988. The constraint logic

programming language CHIP. In Proceedings of the International Conference on Fifth Generation Computer

Systems FGCS-88, 693±702. Tokyo, Japan.

ECRC. 1994. ECL PS, User Manual Version 3.4.1, July 1994.

Jaffar, J., and S. Michaylov. 1987. Methodology and implementation of a CLP system. In Proceedings of the

International Conference on Logic Programming, 196±218.

Mackworth, A. K. 1977. Consistency in networks of relations. Artificial Intelligence 8:99±118.

Mehl, M. 1994. Window programming in DFKI Oz. DFKI Oz documentation series, German Research Center for

Artificial Intelligence (DFKI), Saarbrücken, Germany.

Schulte, C. 1994. Open programming in DFKI Oz. DFKI Oz documentation series, German Research Center for

Artificial Intelligence (DFKI), Saarbrücken, Germany.

Sidebottom, G. A. 1993. A language for optimizing constraint propagation. Ph.D. thesis, Simon Fraser University,

Burnaby, B.C., Canada.

Smolka, G. 1995a. The definition of Kernel Oz. In A. Podelski (ed.), Constraints: Basics and trends. Lecture Notes

in Computer Science, vol. 910, 251±292. New York: Springer-Verlag.

Smolka, G. 1995b. The Oz programming model. In Jan van Leeuwen (ed.), Computer science today. Lecture Notes

in Computer Science, vol. 1000, 324±343. New York: Springer-Verlag, in press.

Saraswat, V. A., and M. Rinard. 1990. Concurrent constraint programming. In Proceedings of the 7th Annual ACM

Symposium on Principles of Programming Languages, 232±245. San Francisco, Calif.

Schulte, C., and G. Smolka. 1994. Encapsulated search in higher-order concurrent constraint programming. In

Maurice Bruynooghe (ed.), Logic programming: Proceedings of the 1994 International Symposium, 505±520.

Cambridge, Mass.: MIT Press.

Schulte, C., G. Smolka, and J. Würtz. 1994. Encapsulated search and constraint programming in Oz. In A. H. Borning

(ed.), Second workshop on principles and practice of constraint programming. Lecture Notes in Computer

Science, vol. 874, 134±150. New York: Springer-Verlag.

Smolka, G., and R. Treinen (eds.), 1995. DFKI Oz Documentation Series. German Research Center for Artificial

Intelligence (DFKI), Saarbrücken, Germany.

Van Hentenryck, P., V. Saraswat, and Y. Deville. 1991. Constraint processing in cc(FD). Technical report, Brown

University, Providence, R.I.

Van Hentenryck, P., V. Saraswat, and Y. Deville. 1995. Design, implementation and evaluation of the constraint

language cc(FD). In A. Podelski (ed.), Constraints: Basics and trends. Lecture Notes in Computer Science,

vol. 910, 293±316. New York: Springer-Verlag.

Constraint-Based Time-Tabling 453

