
 15 Support for test suites

 15.1 Overview

 15.1.1 Introduction

The purpose of testing is to determine whether a program or system behaves as expected.
Tests executed after initial introduction of a program or system are known as regression tests.
Regression tests determine correct functionality of a program or system and, after
maintenance releases, check new functionality and determine that fixes do not 'break' older
releases, that is, incorrect functionality in older releases do not resurface.

 The minimal unit of testing is the 'test case'. One or more test cases are aggregated and
executed during the same test run, the aggregation is called a 'test suite'. That is, a 'test suite' is
composed of one or more 'test cases'. Each 'test case' determines correct execution of one or
more bits of program or system functionality.

To be useful, each 'test case' within a 'test suite' must have a means to report the status of a
given test, and the 'test suite' must have a means of reporting the aggregate status of all 'test
cases' contained within the suite.

A 'test case' is said to 'pass' when the returned result of testing is the same as the expected
result of running the test. There are several possibilities for a returned result. The 'test case'
results are:

• PASS: the test succeeded.

• FAIL: the test failed.

• SKIP: the test was not executed.

 These results are compared to test expectations in the following way:

EXPECT TEST RESULT DESCRIPTION

PASS PASS PASS The expected result and the actual result agree.

PASS FAIL FAIL The expected result and the actual result disagree.

FAIL FAIL XFAIL The expected result and the actual result agree.

FAIL PASS XPASS The expected result and the actual result disagree.

SKIP PASS Test not executed.

HARD FAIL Test precondition prevented test execution.

LEGEND

EXPECT Developer expected test results.

TEST Actual test results.

RESULT Test status

LEGEND

DESCRIPTON Description.

When the 'test case' result and the expected result agree, then the test is said to pass.
If the expected result is PASS and the test passes, then the result is PASS. If the
executed result is FAIL and the test fails, then the result is XFAIL.

If the expected result is PASS and the 'test case' result is FAIL, then the result is FAIL.
If the 'test case' is expected to FAIL and it PASSes, then the result is XPASS. XPASS
is considered as a failure.

If the 'test case' was SKIPed, then the result is nominally PASS.

If some required precondition is not satisfied and a test case in a test suite or all test cases in
the test suite can not be executed, then this is considered as a HARD error.

All effected 'test cases' are marked as not executing. For example, if a required library
or program is not available then this would constitute a HARD failure.

Automake generates a make file which contains the test harness. The test harness contains a
test driver to execute desired tests. The developer instructs Automake what test harness is
wanted, what test driver to use, and what test cases to execute.

The generated make file uses the test harness to report the value of the test driver executing
each test case. The aggregated value of executing all tests, the test suite value, is reported by
by the test harness at completion. Looking at the RESULT values above, a single FAIL in
execution of any test case will cause the test suite to FAIL.

The developer's Automake generation process is diagrammatically represented as:

The developers requirements for the test harness, test driver, and test cases are presented to
automake which generates a make file for the user.

The user's perspective begins with a request to run the test driver, “make check”. At this
point, make executes the developer chosen test harness which in it's turn executes the
developer chosen test driver. The test driver executes each of the developer identified test
cases and reports the results back to the test harness. The test harness shows the user the result

automake make

test harness

test driver

test cases

of executing each test case and the aggregate result of executing the test suite. The users
perspective is diagramatically given below.

In summary there is a developer perspective and a user perspective. The developer chooses
the test harness, the test drivers, and the test suite. Automake generates a make file which the
user executes. The user executes the developer provided test suite by executing the
“make check” command as a shell command. Make then executes the test harness which
executes the test driver. The test driver executes each test case in the test suite and reports the
result back to the test harness. The test harness reports the result of executing each test case to
the user and reports the aggregate result of executing all tests (the test suite result).

 15.1.2 Conventions

All macro names and Automake variables are capitalized, contain no embedded spaces, begin
with a letter and are followed by zero or more letters and underscores.

Automake variables in configure.ac files are prefixed by AM_. The use of these variables
have a bearing on automake generated Makefiles and are accessible in Makefile.am files.

Automake variables in Makefile.am files may be prefixed by AM_. Various automake
variables are not (see …).

Automake variables accessible to user calling make check have the AM_ prefis removed. If
there is no AM_ prefix then the name available to the user is the same as that used in a
Makefile.am / Makefile. For example, AM_ext_LOG_COMPILER in a Makefile.am file is
available to the user as ext_LOG_COMPILER.

The user changes a variable value in *nix systems by using the env shell function. env
replaces or inserts a variable name with value into the shell environment, making the variable
value available when make check is invoked.

Assignments to a variable are made by AM_name = value. Blanks or tab character between
AM_name and '=', and between '=' and value are allowed and ignored. Where one blanks is
allowed, manny are permitted.

The general format of env is:

env variable_list executable program
| | |
| | o make check
| |
| o list of space separated variable=value pairs
|
o shell function name

A value in a variable-value pair can not have embedded blanks. If there are embedded
blanks then the value list must be surrounded by quotes, either '' or “”.

Here are some examples.

env sh_LOG_FLAGS=flag make check Assignment of flag value

env TESTS='a b c' make check List of tests

env TESTS='a b c' sh_LOG_FLAGS=flag make check Combination of above

M4 macros appearing in configure.ac files have the following formats:

AM_name Macro with no arguments

AM_name() Macro with no arguments

AM_name(arg) Macro with one argument

AM_name([arg]) Macro with one quoted argument

AM_name(arg1,arg2) Macro with two arguments

AM_name(arg1,,arg3) Macro with three arguments, on defaulted

AM_name(arg1,) Macro with one input and the remaining defaulted
arguments

AM_name(arg1) Same as above.

The quote bracket is '[]', not '' or “” as in some computer languages.

Multiple arguments are separated by a comma (,). Missing arguments use their default values.
If a missing input argument occurs between two input argument values, then the mmissing
argument is represented by a null input value separated by two commas, one separating the
preceding argument value from the null input, the other separating the null input from the
following input value. The null value is replaced by the argument default. If the last input
argument is to be followed by null inputs, then a single comma (,) can be used to represent
that all following arguments are to take their default values or the last input argument can be
immediately followed by a macro closing parenthesis.

Note that there iss an ambiguity of representation in some of the forms. This ambiguity is
unambiguously resolved because M4 macros do not allow overloading/overriding. A single

macro name always represents the same macro. Eliding terminal input arguments is resolved
by referencing a single, known macro.

There is a further ambiguity in that AM_name can be either a macro with one argument or a
variable name. Sorry. That's the way it is.

 15.1.3 Automake Variable Values

An automake variable takes on values by assignment, AM_name=value. The assignment can
be by a user if allowed, or from within a Makefile.am file. The values can be:

null M_name=
value M_name= some_value
value list M_name= some_value some_value ...
shell commands M_name='mv a b'

Within a Makefile.am file, whitespace (blanks or tabs) are ignored between AM_name and '='
and between '=' and value. When the assignment is made in a *nix script, the blank
conventions of the scripting language are followed. For bash-like scripting languages,
whitespace is not allowed.

Lists of values are separated by whitespace. For example:
AM_name = a b c is valid but
AM_name = a,b,c is not.

Shell command values are assumed to be bash compliant unless otherwise indicated. The
contents, what scripting commands are valid, depend on the variable.

In all cases, where the number of entries is to be separated onto several lines, each line except
the last, must be terminated with a back slash '\'. The back slash can not be followed by any
character except a line feed (<lf>).

 15.1.4 User Test Initiation

Testing is begun buy the user with:

make check

Issued from the scripting shell command line. A tet can not be executed until after the
installation has been configured and installed, as in:

configure && make && make install

Where configure checks the preconditions for building and configure Makefile, as appropriate,
to the user's build machine. make uses the configured Makefile to compile and/or to perform
other operations required by the developer, and make install installs the compiled program or
library as well as documentation and other artifacts into the correct user build machine
directories. The && is a logical bash connective which terminates processing if the preceding
executable program (configure or make) fails.

After the make install, the user starts a test with:

make eheck

The user can modify the overall behavior of testing though the use of arguments when
invoking a test. The format of invocation is:

make –option1=value --option2=value check

where the options (optioni) are long form argumentsand check is the make recognized option
to begin testing.

--test-name=NAME

The name of the test, with VPATH prefix (if any) removed. This can have a suffix and a
directory component (as in e.g., sub/foo.test), and is mostly meant to be used in console
reports about testsuite advancements and results (see Testsuite progress output).

--log-file=PATH.log

The .log file the test driver must create (see Basics of test metadata). If it has a directory
component (as in e.g., sub/foo.log), the test harness will ensure that such directory exists
before the test driver is called.

--trs-file=PATH.trs

The .trs file the test driver must create (see Basics of test metadata). If it has a directory
component (as in e.g., sub/foo.trs), the test harness will ensure that such directory exists
before the test driver is called.

--color-tests={yes|no}

Whether the console output should be colorized or not (see Simple tests and color-tests, to
learn when this option gets activated and when it doesn’t).

--expect-failure={yes|no}

Whether the tested program is expected to fail.

file:///E:/home/skidmarks/automake/automake.html#Testsuite-progress-output
file:///E:/home/skidmarks/automake/automake.html#Simple-tests-and-color_002dtests
file:///E:/home/skidmarks/automake/automake.html#Basics-of-test-metadata
file:///E:/home/skidmarks/automake/automake.html#Basics-of-test-metadata

--enable-hard-errors={yes|no}

Whether “hard errors” in the tested program should be treated differently from normal failures
or not (the default should be yes). The exact meaning of “hard error” is highly dependent
from the test protocols or conventions in use.

--

 15.1.5 Test Harness Variables

All variables used by automake to support testing are listed. The variables can be
characterized by occurrence (configure.ac, Makefile.am, user, test system), type (single value,
multiple value, shell script) and where the user can modify it, type of modification
(replacement, append, append with separator).

A variable may be all of available in configure.ac, makefile.am and user modifiable. A
variable type and a variable user modification can only be one of the identified options.

A variable can be used and appear in the test harness, test driver, or test case. The meaning is
consistent across all usages.

A variable can have its usage restricted or value restricted to a particular type of test harness,
test driver, or test case. That is, a variable can be in only a parallel test harness but not a serial
test harness, or a custom test driver or TAP test driver or dejagnu test driver. Such
restrictions or uses are non-conflicting because a given Makefile.am can specify only one type
of each of a test harness or test driver. Any apparent conflicts in syntax or values in
description is resolved on selection.

Alphabetic List of Test Harness Variables

loc test env val

Variable name s c m u h s p c d t l s reference

AM_COLOR_TESTS √ √ √ √

AM_LOG_DRIVER_FLAGS

AM_ext_LOG_COMPILER

AM_ext_LOG_DRIVER_FLAGS

AM_ext_LOG_FLAGS

AM_LOG_DRIVER_FLAGS

AM_LOG_FLAGS

AM_RUNTESTFLAGS √ √

AM_TESTS_ENVIRONMENT √ √ √

AM_TESTS_FD_REDIRECT √ √

AUTOMAKE_OPTIONS √ √ √ √

Alphabetic List of Test Harness Variables

DISABLE_HARD_ERRORS √ √

DEJATOOL √ √

ext_LOG_COMPILER √

ext_LOG_DRIVER_FLAGS √

ext_LOG_FLAGS √

ext_LOG-DRIVER √

EXPECT √ √

EXTRA_DEJAGNU_SITE_CONFIG √ √

LOG_COMPILER

LOG_DRIVER

LOG_DRIVER_FLAGS

LOG_FLAGS

RECHECK_LOGS √ √

RUNTEST √ √

RUNTESTDEFAULTFLAGS √ √ √

srcdir √ √ √ √ √ √ √ √ √

TESTS √ √

TEST_EXTENSIONS √ √ √

TEST_LOGS

TEST_SUITE_LOG

TESTS_ENVIRONMENT

VERBOSE √ √ √ √

XFAIL_TESTS √ √ √ √

Legend

Variable Name Name of variable. The ext in names is substituted for extension
names.

loc Location variable set/used

s Used in the Test Harness system. Systemic to all tests.

c Used in the configure.ac file.

m Used in the Makefile.am file.

u Used by the user (part of the environment passed to make.

test env Test environment variable used (Makefile.am)

h Applies to all test harnesses

s Serial Test Harness

p Parallel Test Harness

c Custom Test Driver

d dejagnu

t Test Anything Protocol (TAP)

reference Section of manual variable is further described

val Value type

l A list of zero or more items

s A shell script

Variables that can be modified by the user are indicated in the following table. These
variables are defaulted to their Makefile.am values unless the user modifies them. Then the
variables take on a new value, with the new value dependent on the variable definition. Some
variables are overridden, the user value supplanting the Makefile.am value, and some
variables are append user data.

User Modifiable Variables

User Name Makefile.am Name reference

ext_LOG_COMPILER AM_ext_LOG_COMPILER

ext_LOG_DRIVER_FLAGS AM_ext_LOG_DRIVER_FLAGS

ext_LOG_FLAGS AM_ext_LOG_FLAGS

ext_LOG-DRIVER AM_ext_LOG-DRIVER

TESTS TESTS

 15.2 System Test Variables

AM_TESTS_ENVIRONMENT

AM_COLOR_TESTS {no, always}

 15.3 Test Harness

A test harness (also testsuite harness) is a program or software component that executes all
(or part of) the defined test cases, analyzes their outcomes, and report or register these
outcomes appropriately.

	15 Support for test suites
	15.1 Overview
	15.1.1 Introduction
	15.1.2 Conventions
	15.1.3 Automake Variable Values
	15.1.4 User Test Initiation
	15.1.5 Test Harness Variables

	15.2 System Test Variables
	15.3 Test Harness

